Skip to main content
Log in

Ab initio electrical properties of CO2: polarizabilities, hyperpolarizabilities, and multipole moments

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present ab initio calculations of the polarizability, hyperpolarizability, quadrupole moment, and hexadecapole moment of CO2. Our calculations employ two families of systematically extensible Gaussian basis sets; the largest basis set used in this work, the aug-pc-4 augmented polarization consistent basis set, consists of (9s8p7d4f3g2h) functions on each of the three atoms. We incorporate electron correlation effects using both second-order Møller–Plesset theory and a coupled cluster treatment that includes single and double excitations and a perturbative treatment of triple excitations. We investigate how the electrical properties of CO2 change along the molecule’s symmetric stretch vibrational coordinate, and we compare our calculations to prior theoretical and experimental results where possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Péréz-Sánchez G, González-Salgado D, Piñeiro MM, Vega C (2013) Fluid-solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: the role of the quadrupole. J Chem Phys 138:084506. https://doi.org/10.1063/1.4792443

    Article  CAS  PubMed  Google Scholar 

  2. Teboul V, Duff YL, Bancewicz T (1995) Collision-induced scattering in CO2 gas. J Chem Phys 103:1384. https://doi.org/10.1063/1.469761

    Article  CAS  Google Scholar 

  3. Hartmann J-M, Boulet C (2011) Molecular dynamics simulations for CO2 spectra. III. Permanent and collision-induced tensors contributions to light absorption and scattering. J Chem Phys 134: 184312. https://doi.org/10.1063/1.3589143

  4. El-Kader MSA, Maroulis G (2017) Quantum spectral rototranslational collision-induced absorption (CIA) in CO2 and CO2 - Rg pairs (Rg = He, Ar and Xe): An insightful analysis based on new empirical multi-property isotropic intermolecular potentials. Chem Phys Lett 670:95–101. https://doi.org/10.1016/j.cplett.2016.12.066

    Article  CAS  Google Scholar 

  5. Wordsworth R, Forget F, Eymet V (2010) Infrared collision-induced and far-line absorption in dense CO2 atmospheres. Icarus 210:992–997. https://doi.org/10.1016/j.icarus.2010.06.010

    Article  CAS  Google Scholar 

  6. Haskopoulos A, Maroulis G (2006) Dipole and quadrupole (hyper)polarizability for the asymmetric stretching of carbon dioxide: Improved agreement between theory and experiment. Chem Phys Lett 417:235–240. https://doi.org/10.1016/j.cplett.2005.10.023

    Article  CAS  Google Scholar 

  7. Maroulis G (2003) Electric (hyper)polarizability derivatives for the symmetric stretching of carbon dioxide. Chem Phys 291:81–95. https://doi.org/10.1016/S0301-0104(03)00186-1

    Article  CAS  Google Scholar 

  8. Kalugina YN, Cherepanov VN (2015) Multipole electric moments and higher polarizabilities of molecules: methodology and some results of ab initio calculations. Atmos Ocean Opt 28:406–414. https://doi.org/10.1134/S1024856015050061

    Article  CAS  Google Scholar 

  9. Buckingham AD (1967) Permanent and Induced molecular moments and long-range intermolecular forces. In: Advances in chemical physics. Wiley, pp 107–142

  10. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622. https://doi.org/10.1103/PhysRev.46.618

    Article  Google Scholar 

  11. Maroulis G, Thakkar AJ (1988) Multipole moments, polarizabilities, and hyperpolarizabilities for N2 from fourth-order many-body perturbation theory calculations. J Chem Phys 88:7623–7632. https://doi.org/10.1063/1.454327

    Article  CAS  Google Scholar 

  12. Pritchard BP, Altarawy D, Windus TL (2019) A new basis set exchange: an open, up-to-date resource for the molecular sciences community. J Chem Inf Model 59:4814–4820. https://doi.org/10.1021/acs.jcim.9b00725

    Article  CAS  PubMed  Google Scholar 

  13. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045–1052. https://doi.org/10.1021/ci600510j

    Article  CAS  PubMed  Google Scholar 

  14. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806. https://doi.org/10.1063/1.462569

    Article  CAS  Google Scholar 

  15. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  16. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571–1586. https://doi.org/10.1002/(SICI)1096-987X(199610)17:13%3C1571::AID-JCC9%3E3.0.CO;2-P

    Article  CAS  Google Scholar 

  17. Woon DE, Dunning TH (1994) Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J Chem Phys 100:2975–2988. https://doi.org/10.1063/1.466439

    Article  CAS  Google Scholar 

  18. Jensen F (2001) Polarization consistent basis sets: principles. J Chem Phys 115:9113–9125. https://doi.org/10.1063/1.1413524

    Article  CAS  Google Scholar 

  19. Jensen F (2002) Polarization consistent basis sets. II. Estimating the Kohn–Sham basis set limit. J Chem Phys 116:7372–7379. https://doi.org/10.1063/1.1465405

    Article  CAS  Google Scholar 

  20. Jensen F (2002) Polarization consistent basis sets. III. The importance of diffuse functions. J Chem Phys 117:9234–9240. https://doi.org/10.1063/1.1515484

    Article  CAS  Google Scholar 

  21. Cizek J, Paldus J (1980) Coupled cluster approach. Phys Scr 21:251–254. https://doi.org/10.1088/0031-8949/21/3-4/006

    Article  CAS  Google Scholar 

  22. Purvis GD III, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76:1910–1918. https://doi.org/10.1063/1.443164

    Article  CAS  Google Scholar 

  23. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483. https://doi.org/10.1016/S0009-2614(89)87395-6

    Article  CAS  Google Scholar 

  24. Levine IN (2013) Quantum chemistry, 7th ed. Pearson Prentice Hall

  25. Wattson RB, Rothman LS (1992) Direct numerical diagonalization: wave of the future. J Quant Spectrosc Radiat Transf 48:763–780. https://doi.org/10.1016/0022-4073(92)90140-Y

    Article  CAS  Google Scholar 

  26. Quinet O, Champagne B, Kirtman B (2001) Analytical TDHF second derivatives of dynamic electronic polarizability with respect to nuclear coordinates. Application to the dynamic ZPVA correction. J Comput Chem 22:1920–1932. https://doi.org/10.1002/jcc.1142

    Article  CAS  Google Scholar 

  27. Quinet O, Champagne B (2001) Time-dependent Hartree–Fock schemes for analytical evaluation of the Raman intensities. J Chem Phys 115:6293–6299. https://doi.org/10.1063/1.1398310

    Article  CAS  Google Scholar 

  28. Quinet O, Champagne B (2002) Analytical time-dependent Hartree–Fock schemes for the evaluation of the hyper-Raman intensities. J Chem Phys 117:2481–2488. https://doi.org/10.1063/1.1490596

    Article  CAS  Google Scholar 

  29. Quinet O, Kirtman B, Champagne B (2003) Analytical time-dependent Hartree–Fock evaluation of the dynamic zero-point vibrationally averaged (ZPVA) first hyperpolarizability. J Chem Phys 118:505–513. https://doi.org/10.1063/1.1523903

    Article  CAS  Google Scholar 

  30. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  31. Gordon MS, Schmidt MW (2005) Chapter 41—advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry. Elsevier, Amsterdam, pp 1167–1189

    Chapter  Google Scholar 

  32. Piecuch P, Kucharski SA, Kowalski K, Musiał M (2002) Efficient computer implementation of the renormalized coupled-cluster methods: the R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Comput Phys Commun 149:71–96. https://doi.org/10.1016/S0010-4655(02)00598-2

    Article  CAS  Google Scholar 

  33. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Dam HJJV, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489. https://doi.org/10.1016/j.cpc.2010.04.018

    Article  CAS  Google Scholar 

  34. Karton A, Martin JML (2006) Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations” [Jensen F (2005) Theor Chem Acc 113:267]. Theor Chem Acc 115:330–333. https://doi.org/10.1007/s00214-005-0028-6

    Article  CAS  Google Scholar 

  35. Jensen F (2005) Estimating the Hartree—Fock limit from finite basis set calculations. Theor Chem Acc 113:267–273. https://doi.org/10.1007/s00214-005-0635-2

    Article  CAS  Google Scholar 

  36. Tejeda G, Maté B, Montero S (1995) Overtone Raman spectrum and molecular polarizability surface of CO2. J Chem Phys 103:568–576. https://doi.org/10.1063/1.470091

    Article  CAS  Google Scholar 

  37. Shelton DP (1986) Hyperpolarizability dispersion measured for CO2. J Chem Phys 85:4234–4239. https://doi.org/10.1063/1.451794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. National Science Foundation Division of Chemistry through Grant 1362520.

Funding

This work was supported by the U.S. National Science Foundation Division of Chemistry through Grant 1362520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Hinde.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 412 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beil, R.L., Hinde, R.J. Ab initio electrical properties of CO2: polarizabilities, hyperpolarizabilities, and multipole moments. Theor Chem Acc 140, 120 (2021). https://doi.org/10.1007/s00214-021-02797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02797-y

Keywords

Navigation