Skip to main content
Log in

Anticancer activity of nucleoside analogues: A density functional theory based QSAR study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present work multiple linear regression analyses were performed to build QSAR models for nucleoside analogous using density functional theory (DFT) and molecular mechanics (MM+) based descriptors in both gas and solvent phases. The QSAR models for 14 carbocyclic analogues of nucleosides against murine leukemia cell line (L1210/0) and human T-lymphocyte cell lines (Molt4/C8 and CEM/0) explain more than 90% of the variances in the activity data along with higher values of \( r_{CV}^2\left( { > 0.86} \right) \). The energy of the next lowest unoccupied molecular orbital (ENL), electrophilicity (ω) and van der Waals surface area (SA) are the main independent factors contributing to the anticancer activity of nucleoside analogues. Inclusion of solvent medium increases the correlation of each descriptor with activity. Based on the key features responsible for anticancer activity, 10 new compounds with rather high anticancer activity have been theoretically designed. Cytotoxic activities of an additional set of 20 nucleoside analogues were also modeled by the same descriptors and found their predicted values to be in good agreement with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cheson BD, Keating MJ, Plunkett W (1997) Nucleoside analogs in cancer therapy. Dekker, New York

    Google Scholar 

  2. David YB, Jacques J, Lorraine LBH, France O, Sylvain BAR, Henriette G (2003) Cancer Chemother Pharmacol 52:497–506

    Article  CAS  Google Scholar 

  3. Zbigniew P, Jean-Luc G, Cathey E, Guangyi W (2001) Nucleosides Nucleotides. Nucleic Acids 20:323–328

    Article  Google Scholar 

  4. Fernandez F, Garcia-Mera X, Morales M, Rodriguez-Borges JE (2001) Synthesis 2:239–242

    Article  Google Scholar 

  5. Abad F, Alvarez F, Fernandez F, Garcia-Mera X, Rodriguez-Borges JE (2001) Nucleosides Nucleotides. Nucleic Acids 20:1127–1128

    Article  CAS  Google Scholar 

  6. Yao SW, Lopes VHC, Fernandez F, Garcia-Mera X, Morales M, Rodriguez-Borges JE, Cordeiroa MNDS (2003) Bioorg Med Chem 11:4999–5006

    Article  CAS  Google Scholar 

  7. Wan J, Zhang L, Yang GF (2004) J Comput Chem 25:1827–1832

    Article  CAS  Google Scholar 

  8. Srivastava HK, Pasha FA, Singh PP (2005) Int J Quantum Chem 103:237–245

    Article  CAS  Google Scholar 

  9. Karelson M, Lobanov VS (1996) Chem Rev 96:1027–1043

    Article  CAS  Google Scholar 

  10. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  11. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  12. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  13. Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  14. Chattaraj PK, Maiti B, Sarkar U (2003) J Phys Chem A 107:4973–4975

    Article  CAS  Google Scholar 

  15. Chatterjee A, Balaji T, Matsunaga H, Mizukami F (2006) J Mol Graph Model 25:208–218

    Article  CAS  Google Scholar 

  16. Roos G, Loverix S, De Proft F, Wyns L, Geerlings P (2003) J Phys Chem A 107:6828–6836

    Article  CAS  Google Scholar 

  17. Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK (2004) Bioorg Med Chem 12:5533–5543

    Article  CAS  Google Scholar 

  18. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Bioorg Med Chem 14:1021–1028

    Article  CAS  Google Scholar 

  19. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Chem Res Toxicol 19:356–364

    Article  CAS  Google Scholar 

  20. Sarmah P, Deka RC (2008) Int J Quantum Chem 108:1400–1409

    Article  CAS  Google Scholar 

  21. Sarmah P, Deka RC (2009) J Computer Aided Mol Design 23:343–354

    Article  CAS  Google Scholar 

  22. Iczkowski RP, Margrave JL (1961) J Am Chem Soc 83:3547–3551

    Article  CAS  Google Scholar 

  23. Koopmans TA (1933) Physica 1:104–113

    Article  CAS  Google Scholar 

  24. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  25. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Phys Rev 37:785–789

    Article  CAS  Google Scholar 

  27. Hehre WJ, Radom L, Schlyer PR, Pople JA (1986) Ab Initio molecular orbital theory. Wiley, New York

    Google Scholar 

  28. Andzelm J, Koelmel C, Klamt A (1995) J Chem Phys 103:9312–9320

    Article  CAS  Google Scholar 

  29. HyperChem; Release 7; Hypercube; http://www.hyper.com/, 2002

  30. Wold S (1991) Quant Struct Act Rel 10:191–193

    Article  CAS  Google Scholar 

  31. Fukui K, Yonezawa T, Shingu H (1952) J Chem. Phys 20:722–725

    CAS  Google Scholar 

  32. Fleming J (1976) Frontier orbital and organic chemical reaction. Wiley, New York

    Google Scholar 

  33. Helguera AM, Rodriguez-Borges JE, Garcia-Mera X, Fernandez F, Cordeiroa MNDS (2007) J Med Chem 50:1537–1545

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology (DST), New Delhi for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Deka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarmah, P., Deka, R.C. Anticancer activity of nucleoside analogues: A density functional theory based QSAR study. J Mol Model 16, 411–418 (2010). https://doi.org/10.1007/s00894-009-0551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0551-9

Keywords

Navigation