Skip to main content
Log in

Efficient conformational sampling of multiconformational cyclic molecules: application to 1,4,7,10,13-Pentaoxacyclopentadecane

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The result of an exhaustive search of low-energy conformers of 1,4,7,10,13-Pentaoxacyclopentadecane is presented. The search method combines the generation of large number of trial conformers using local nonstochastic deformations known as the Conflex method, which is coupled to AMBER force field as the minimizer. The extent of the conformational space sampled was evaluated from the view point of the number of duplicates of each conformer, generation of inclusion type structures without considering the substrate and the spread of the allowed torsion angles visited during the search. It is shown that the conformational search is exhaustive and efficient as conformers, which the metal coordinated crown ether complexes adopt, were generated. Free energies using the AMBER structures were calculated using the model of Cramer and Truhlar. The study suggests that 1,4,7,10,13-Pentaoxacyclopentadecane exists as a mixture of conformers in solution. The results show the efficiency of the method and could be the method of choice in the design of synthetic macrocyclic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lehn JM (1988) Angew Chem Int Ed Engl 27:89–112

    Article  Google Scholar 

  2. Horwitz EP, Dietz ML, Fisher DE (1991) Solvent Extract Ion Exchange 9:1–25

    Article  CAS  Google Scholar 

  3. Kimura KC (1996) Coord Chem Rev 148:41–61

    Article  CAS  Google Scholar 

  4. Alexander V (1995) Chem Rev 95:273–342

    Article  CAS  Google Scholar 

  5. Dougherty DA, Stauffer DA (1990) Science 250:1558–1560

    Article  CAS  Google Scholar 

  6. Diao KS, Wang HJ, Qiu ZM (2009) THEOCHEM 901:157–162

    Article  CAS  Google Scholar 

  7. Wickstrom T, Dale J, Lund W, Buoen S (1988) Anal Chim Acta 211:223–229

    Article  Google Scholar 

  8. Hancock RD, Martell AE (1989) Chem Rev 89:1875–1914

    Article  CAS  Google Scholar 

  9. Izatt RM, Pawlak K, Bradshaw JS, Bruening RL (1991) Chem Rev 91:1721–2085

    Article  CAS  Google Scholar 

  10. Dang LX, Kollman PA (1990) J Am Chem Soc 112:5716–5720

    Article  CAS  Google Scholar 

  11. Ha YL, Chakraborty AK (1992) J Phys Chem 96:6410–6417

    Article  CAS  Google Scholar 

  12. Troxler L, Wipff G (1994) J Am Chem Soc 116:1468–1480

    Article  CAS  Google Scholar 

  13. Wipff G (1992) J Coord Chem 27:7–37

    Article  CAS  Google Scholar 

  14. Sun Y, Kollman PA (1992) J Comput Chem 13:33–40

    Article  CAS  Google Scholar 

  15. Auffinger P, Wipff G (1990) J Comput Chem 11:19–31

    Article  CAS  Google Scholar 

  16. Anderson WP, Behm P, Glennon TM, Zerner MC (1997) J Phys Chem A 101:1920–1926

    Article  CAS  Google Scholar 

  17. Joanne B, Cragg PJ, Drew MGB (1994) J Chem Soc Dalton Trans 719–729

  18. Hill SE, Feller D (2000) Int J Mass Spectrom 201:41–58

    Article  CAS  Google Scholar 

  19. Jagannadh B, Kunwar AC, Thangavelu RP, Osawa E (1996) J Phys Chem 100:14339–14342

    Article  CAS  Google Scholar 

  20. Jagannadh B, Sumathi Reddy S, Thangavelu RP (2004) J Mol Model 10:55–59

    Article  CAS  Google Scholar 

  21. Jagannadh B, Srinivasa Reddy M, Lohitha Rao Ch, Prabhakar A, Jagadeesh B, Chandrasekhar S (2006) Chem Commun 4847–4849

  22. Goto H, Osawa E (1989) J Am Chem Soc 111:8950–1851

    Article  CAS  Google Scholar 

  23. Goto H, Osawa E (1993) J Chem Soc Perkin Trans 2:187–198

    Google Scholar 

  24. Pearlman DA, Case DA, Caldwell JC, Seibel GL, Singh UC, Weiner P, Kollman PA (1991) AMBER 4.0. University of California, San Francisco

    Google Scholar 

  25. Billeter M, Howard AE, Kuntz ID, Kollman PA (1988) J Am Chem Soc 110:8385–8391

    Article  CAS  Google Scholar 

  26. Dale J (1963) J Chem Soc 93–161

  27. Pilati T, Forni A (1998) J Appl Cryst 31:503–504

    Article  CAS  Google Scholar 

  28. Hawkins GD, Lynch BJ, Kelly CP, Liotard DA, Cramer CJ, Truhlar DG. Omnisol version 2. http://comp.chem.umn.edu/omnisol/.

  29. Kelly CP, Cramer CJ, Truhlar DG (2004) J Phys Chem B 108:12882–12897

    Article  CAS  Google Scholar 

  30. Farrugia LJ (1997) J Appl Cryst 30:565–565

    Article  CAS  Google Scholar 

  31. Chang G, Guid WC, Still WC (1988) J Am Chem Soc 111:4379–4386

    Article  Google Scholar 

  32. Dale J (1973) Acta Chem Scand 27:1115–1129

    Article  CAS  Google Scholar 

  33. Raithby PR, Shields GP, Allen FH (1997) Acta Cryst B 53:476–489

    Article  Google Scholar 

  34. Parsons S (2007) Acta Cryst E 63:03130

    Article  Google Scholar 

  35. Borgen G, Dale J, Daasvatn K, Krane J (1980) J Acta Chem Scand Ser B 34:249–254

    Article  Google Scholar 

  36. Paulsen MD, Rustad JR, Hay BP (1997) THEOCHEM 397:1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. P. Thangavelu of CMMACS (Centre for Mathematical Modelling and Computer Simulation, Bangalore) for his help in programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulusu Jagannadh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagannadh, B., Dharshna Priya, K.R., Chandini Devi, L. et al. Efficient conformational sampling of multiconformational cyclic molecules: application to 1,4,7,10,13-Pentaoxacyclopentadecane. J Mol Model 16, 285–290 (2010). https://doi.org/10.1007/s00894-009-0550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0550-x

Keywords

Navigation