Skip to main content
Log in

Theoretical description of bonding in cis-W(CO)4(piperidine)2 and its dimer

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The gradient-corrected DFT calculations were applied to characterize the bonding in the cis-W(CO)4(piperidine)2 complex and its dimer. The Nalewajski–Mrozek bond order analysis, the Ziegler–Rauk bond-energy partitioning and Natural Orbitals for Chemical Valence (NOCV’s) were applied in a description of the electronic structure of cis-W(CO)4(piperidine)2. The results indicate that the metal-carbon bond trans to piperidine is stronger than that in the cis position, as a result of an increase in both, the ligand→ metal donation and metal → ligand π-back-bonding; this implies a weakening of the carbon–oxygen bond. In the dimeric complex, modeling the interactions in the solid state, the C–O bond is further weakened resulting in the lowering the CO stretching frequencies, observed experimentally by Braunstein et al. (Angew. Chem. Int. Ed. (2004), 43:5922–5925).

Interaction of cis-W(CO)4(piperidine)2 units in solid state together with NOCV's based bonding analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mond L, Quincke LC (1890) J Chem Soc 57:749–753

    CAS  Google Scholar 

  2. Cotton FA, Wilkinson G (1998) Advanced inorganic chemistry. Wiley, New York

    Google Scholar 

  3. Solomon EI, Lever ABP (2006) Inorganic electronic structure and spectroscopy. Wiley, New York

    Google Scholar 

  4. Elschenbroich C (2005) Organometallics. Wiley-VCH, Weinheim

    Google Scholar 

  5. Pruchnik F (1990) Organometallic chemistry of transition metal elements. Plenum, New-York

    Google Scholar 

  6. Werner H (1990) Angew Chem Int Ed 29:1077–1089

    Article  Google Scholar 

  7. Cotton FA (1976) Prog Inorg Chem 21:1–28

    Article  CAS  Google Scholar 

  8. Ellis JE, Beck W (1995) Angew Chem Int Ed 34:2489–2491

    Article  CAS  Google Scholar 

  9. Davidson R (1993) Acc Chem Res 26:628–635

    Article  CAS  Google Scholar 

  10. Frenking G, Fröhlich N (2000) Chem Rev 100:717–774 and refs therein

    Article  CAS  Google Scholar 

  11. Ziegler T, Autschbach J (2005) Chem Rev 105:2695–2722 and refs therein

    Article  CAS  Google Scholar 

  12. Ziegler T (1991) Chem Rev 91:651–667

    Article  CAS  Google Scholar 

  13. Solomon EI, Jones PM, May JA (1993) Chem Rev 93:2623–2644

    Article  CAS  Google Scholar 

  14. Sen A (2002) Catalytic synthesis of alkene—carbon monoxide copolymers and cooligomers. Kluwer Academic Publishers, Dordrecht

  15. Cariati E, Roberto D, Ugo R (2003) Chem Rev 103:3707–3732

    Article  CAS  Google Scholar 

  16. Ragsdale SW, Kumar M (1996) Chem Rev 96:2515–2539

    Article  CAS  Google Scholar 

  17. Zhou M, Andrews L, Bauschlicher CW (2001) Chem Rev 101:1931–1961

    Article  CAS  Google Scholar 

  18. Braunstein P, Taquet JP, Siri O, Welter R (2004) Angew Chem Int Ed 43:5922–5925

    Article  CAS  Google Scholar 

  19. Nalewajski RF, Mrozek J (1994) Int J Quant Chem 51:187–200

    Article  CAS  Google Scholar 

  20. Nalewajski RF, Mrozek J, Formosinho SJ, Varandas AJC (1994) Int J Quant Chem 52:1153–1176

    Article  CAS  Google Scholar 

  21. Nalewajski RF, Mrozek J (1996) Int J Quant Chem 57:377–389

    Article  CAS  Google Scholar 

  22. Nalewajski RF, Mrozek J, Mazur G (1996) Can J Chem 74:1121–1130

    Article  CAS  Google Scholar 

  23. Nalewajski RF, Mrozek J, Michalak A (1997) Int J Quant Chem 61:589–601

    Article  CAS  Google Scholar 

  24. Nalewajski RF, Mrozek J, Michalak A (1998) Polish J Chem 72:1779–1791

    Google Scholar 

  25. Michalak A, De Kock R, Ziegler T (2008) J Phys Chem A 112:7256–7263

    Article  CAS  Google Scholar 

  26. Ziegler T, Rauk A (1978) Theor Chim Acta 46:1–9

    Google Scholar 

  27. Ziegler T, Rauk A (1979) Inorg Chem 18:1755–1759

    Article  CAS  Google Scholar 

  28. Michalak A, Mitoraj M, Ziegler T (2008) J Phys Chem A 112:1933–1939

    Article  CAS  Google Scholar 

  29. Mitoraj M, Michalak A (2007) Organomet 26:6576–6580

    Article  CAS  Google Scholar 

  30. Mitoraj M, Michalak A (2007) J Mol Model 13:347–355

    Article  CAS  Google Scholar 

  31. Mitoraj M, Michalak A (2008) J Mol Model 14:681–687

    Article  CAS  Google Scholar 

  32. Mitoraj M, Zhu H, Michalak A, Ziegler (2008) Int J Quant Chem . doi:10.1002/qua.21910

    Google Scholar 

  33. Mitoraj M, Michalak A, Ziegler T (2009) J Chem Theor Comput 5:962–975

    Article  CAS  Google Scholar 

  34. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967 and refs therein

    Article  Google Scholar 

  35. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41–51

    Article  CAS  Google Scholar 

  36. Boerrigter PM, te Velde G, Baerends EJ (1988) Int J Quantum Chem 33:87–113

    Article  CAS  Google Scholar 

  37. Fonesca Geurra C, Visser O, Snijders JG, te Velde G, Baerends EJ (1995) In: Clementi E, Corongiu G (eds) Methods and techniques in computational chemistry METACC-9. STEF, Cagliari, pp 303–395

    Google Scholar 

  38. Becke A (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  39. Perdew JP (1986) Phys Rev B 34:7406–7406

    Article  Google Scholar 

  40. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  41. Ziegler T, Tschinke V, Baerends EJ, Snijders JG, Ravenek W (1989) J Phys Chem 93:3050–3056

    Article  CAS  Google Scholar 

  42. Snijders JG, Baerends E (1978) Mol Phys 36:1789–1904

    Article  CAS  Google Scholar 

  43. Snijders JG, Baerends EJ, Ros P (1979) Mol Phys 38:1909–1929

    Article  CAS  Google Scholar 

  44. Dewar MJS (1951) Bull Soc Chim 18:C71–C79

    Google Scholar 

  45. Chatt J, Duncanson JA (1953) J Chem Soc 3:2939–2943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Michalak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitoraj, M.P., Michalak, A. Theoretical description of bonding in cis-W(CO)4(piperidine)2 and its dimer. J Mol Model 16, 337–342 (2010). https://doi.org/10.1007/s00894-009-0545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0545-7

Keywords

Navigation