Skip to main content
Log in

New vistas in GPCR 3D structure prediction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Human G-protein coupled receptors (hGPCRs) comprise the most prominent family of validated drug targets. More than 50% of approved drugs reveal their therapeutic effects by targeting this family. Accurate models would greatly facilitate the process of drug discovery and development. However, 3-D structure prediction of GPCRs remains a challenge due to limited availability of resolved structure. The X-ray structures have been solved for only four such proteins. The identity between hGPCRs and the potential templates is mostly less than 30%, well below the level at which sequence alignment can be done regularly. In this study, we analyze a large database of human G-protein coupled receptors that are members of family A in order to optimize usage of the available crystal structures for molecular modeling of hGPCRs. On the basis of our findings in this study, we propose to regard specific parts from the trans-membrane domains of the reference receptor helices as appropriate template for constructing models of other GPCRs, while other residues require other techniques for their remodeling and refinement. The proposed hypothesis in the current study has been tested by modeling human β2-adrenergic receptor based on crystal structures of bovine rhodopsin (1F88) and human A2A adenosine receptor (3EML). The results have shown some improvement in the quality of the predicted models compared to Modeller software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21:90–113

    Article  CAS  Google Scholar 

  2. Nurnberg B, Gudermann T, Schultz G (1995) Receptors and G proteins as primary components of transmembrane signal transduction. J Mol Med 73:123–132

    Article  CAS  Google Scholar 

  3. Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  CAS  Google Scholar 

  4. Nambi P, Aiyar N (2003) G protein-coupled receptors in drug discovery. Assay and drug development technologie 1:305–310

    Article  CAS  Google Scholar 

  5. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discovery 5:993–996

    Article  CAS  Google Scholar 

  6. Patny A, Desai PV, Avery MA (2006) Homology modeling of G-protein-coupled receptors and implications in drug design. Curr Med Chem 13(14):1667–1691

    Article  CAS  Google Scholar 

  7. Bissantz C, Bernard P, Hibert M, Rognan D (2003) Protein-based virtual screening of databases. II. Are homology modeling of G-protein coupled receptors suitable targets. Proteins - Struct Func Gen 50:5–25

    Article  CAS  Google Scholar 

  8. Shi L, Simpson MM, Ballesteros JA, Javitch JA (2001) The first transmembrane segment of the dopamine D2 receptor: accessibility in the binding-site crevice and position in the transmembrane bundle. Biochem 40(41):12339–12348

    Article  CAS  Google Scholar 

  9. Javitch JA, Shi L, Simpson MM, Chen J, Chiappa V, Visiers I, Weinestein H, Ballesteros JA (2000) The fourth transmembrane segment of the dopamine D2 receptor: accessibility in the binding-site crevice and position in the transmembrane bundle. Biochem 39(40):12190–12199

    Article  CAS  Google Scholar 

  10. Javitch JA, Ballasteros JA, Chen J, Chiappa V, Simpson MM (1999) Electrostatic and aromatic microdomains within the binding-site crevice of the D2-receptor; contributions of the second membrane-spanning segment. Biochem 38(25):7961–7968

    Article  CAS  Google Scholar 

  11. Kim OJ (2008) A single mutation at lysine 241 alters expression and trafficking of the D2 dopamine receptor. J Recept Signal Transduct Res 28(5):453–464

    Article  CAS  Google Scholar 

  12. Kapur A, Samaniego P, Thakur GA, Makriyannis A, Abood ME (2008) Mapping the structural requirements in the CB1 cannabinoid receptor transmembrane helix II for signal transduction. J Pharmacol Exp Ther 325(1):341–348

    Article  CAS  Google Scholar 

  13. Kuhlbrandt W, Gouaux E (1999) Membrane proteins. Curr Opin Struct Biol 9:445–447

    Article  CAS  Google Scholar 

  14. Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G-protein coupled receptor. Science 289(5480):739–745

    Article  CAS  Google Scholar 

  15. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453(7193):363–367

    Article  CAS  Google Scholar 

  16. Rasmussen SGF, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387

    Article  CAS  Google Scholar 

  17. Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 23 318(5854):1258–1265

    CAS  Google Scholar 

  18. Jaakola VP, Griffith, Hanson MA et al (2008) The 2.6 angstrom crystal structure of a human AA adenosine receptor bound to an antagonist. Science 322(5905):1211–1217

    Article  CAS  Google Scholar 

  19. Warne T, Serrano-Vega MJ, Baket JG et al (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454(7203):486–491

    Article  CAS  Google Scholar 

  20. Fleishman SJ, Unger VM, Ben-Tal N (2006) Transmembrane protein structures without X-rays. Trends Biochem Sci 31(2):106–113

    Article  CAS  Google Scholar 

  21. Standfuss J, Xie G, Edwards PC et al (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372(5):1179–1188

    Article  CAS  Google Scholar 

  22. Porwal G, Jain S, Babu SD et al (2007) Protein structure prediction aided by geometrical and probabilistic constraints. J Comput Chem 28(12):1943–1952

    Article  CAS  Google Scholar 

  23. Srinivasan R, Rose GD (2002) Ab initio prediction of protein structure using LINUS. Proteins 47(4):489–495

    Article  CAS  Google Scholar 

  24. Wu S, Skolnick J, Zhang Y (2007) Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 5:17

    Article  Google Scholar 

  25. Rayan A, Siew N, Cheno Schwartzs S (2000) A novel computational method for predicting the transmembranal structure of G-protein coupled receptors: application to the human C5aR and C3aR. Receptors Channels 7(2):121–137

    CAS  Google Scholar 

  26. Tramontano A, Morea V (2003) Assessment of homolog-based predictions in CASP5. Proteins. 53(suppl 6):352–368

    Article  CAS  Google Scholar 

  27. Eszter H, Zsolt B (2008) Homology modeling of breast cancer resistance protein (ABCG2). J Struct Biol 162:63–74

    Article  Google Scholar 

  28. Li M, Fang H, Du L, Xia L, Wang B (2008) Computational studies of the binding site of alpha1A-adrenoreceptor antagonists. J Mol Model 14(10):957–966

    Article  CAS  Google Scholar 

  29. Schlegel B, Laggner C, Meier R (2007) Generation of a homology model of the human histamine H(3) receptor for ligand docking and pharmacophore-based screening. J Comput Aided Mol Des 21(8):437–453

    Article  CAS  Google Scholar 

  30. Broer BM, Gurrath M, Holtje HD (2003) Molecular modeling studies on the ORL1-receptor and ORL1-agonist. J Comput Aided Mol Des 17(11):739–754

    Article  Google Scholar 

  31. Chandramoorthi GD, Piramanayagam S, Marimuthu P (2008) An insilico approach to high altitude pulmonary edema- Molecular modeling of human beta2 adrenergic receptor and its interaction with Salmeterol & Nifedipine. J Mol Model 14(9):849–856

    Article  CAS  Google Scholar 

  32. Khafizov K, Anselmi C, Menini A, Carloni P (2007) Ligand specificity of odorant receptors. J Mol Model 13(3):401–409

    Article  CAS  Google Scholar 

  33. Kleinau G, Brehm M, Wiedemann U et al (2007) Implications for molecular mechanisms of glycoprotein hormone receptors using a new sequence-structure-function analysis resource. Mol Endocrinology 21(2):574–580

    Article  CAS  Google Scholar 

  34. Kleinau G, Claus M, Jaeschke H et al (2007) Contacts between extracellular loop two and transmembrane helix six determine basal activity of the thyroid-stimulating hormone receptor. J Biol Chem 282(1):518–525

    Article  CAS  Google Scholar 

  35. Oliveira L, Paiva ACM, Vriend G (2002) Correlated mutation analyses on very large sequence families. Chembiochem. 3:1010–1017

    Article  CAS  Google Scholar 

  36. Shacham S, Topf M, Avisar N et al (2001) Modeling the 3D structure of GPCRs from sequence. Med Res Rev 21:472–483

    Article  CAS  Google Scholar 

  37. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96

    Article  CAS  Google Scholar 

  38. Baldwin JM, Schertler GF, Unger VM (1997) An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol 272:144–164

    Article  CAS  Google Scholar 

  39. Mirzadegan T, Benko G, Filipek S et al (2003) Sequence analyses of G-protein-coupled receptors: Similarities to rhodopsin. Biochemistry 42:2759–2767

    Article  CAS  Google Scholar 

  40. Rayan A, Raiyn JA (2008) Intelligent Learning Engine (ILE) Optimization Technology, provisional patent

  41. TMDs-Scanner software, 2008, Rand Biotechnologies LTD

  42. http://www.pdb.org/pdb/explore.do?structureId=1F88

  43. Canutescu AA, Shelenkov AA, Dunbrack RL (2003) A graph theory algorithm for protein side-chain prediction. Protein Sci 12:2001–2014

    Article  CAS  Google Scholar 

  44. Laskowski RA (2003) Structural quality assurance. Methods Biochem Anal 44:273–303

    Article  CAS  Google Scholar 

  45. Rayan A, Noy E, Chema D et al (2004) Stochastic algorithm for kinase homology model construction. Curr Med Chem 11:675–692

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge RAND Biotechnologies ltd company for providing us with the database of rhodopsin like hGPCRs and the Trans-membrane domains allocation module. As well, we thank Prof. Bashar Saad and Dr. Mizied Falah for reading this manuscript and giving helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Rayan.

Electronic supplementary material

Below is the linked to the electronic supplementary material

Supplementary information table 1

List of rhodopsin-like hGPCRs codes (778 receptors in total) (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayan, A. New vistas in GPCR 3D structure prediction. J Mol Model 16, 183–191 (2010). https://doi.org/10.1007/s00894-009-0533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0533-y

Keywords

Navigation