Skip to main content
Log in

Higher order multipole moments for molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In conventional force fields, the electrostatic potential is represented by atom-centred point charges. This choice is in principle arbitrary, but technically convenient. Point charges can be understood as the first term of multipole expansions, which converge with an increasing number of terms towards the accurate representation of the molecular potential given by the electron density distribution. The use of multipole expansions can therefore improve the force field accuracy. Technically, the implementation of atomic multipoles is more involved than the use of point charges. Important points to consider are the orientation of the multipole moments during the trajectory, conformational dependence of the atomic moments and stability of the simulations which are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Multipole parameters identical to those from Table 2 for all molecules considered can be obtained from the authors on request.

References

  1. Bader RFW (1990) Atoms in molecules; a quantum theory. Clarendon, Oxford

    Google Scholar 

  2. Besler BH, Merz KM, Kollman PA (1990) J Comp Chem 11:431–439

    Article  CAS  Google Scholar 

  3. Coombes DS, Price SL, Willock DJ, Leslie M (1996) J Phys Chem 100:7352–7360

    Article  CAS  Google Scholar 

  4. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SES, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg J, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision c.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  5. Gray AE, Day GM, Leslie M, Price SL (2004) Mol Phys 102:1067–1083

    Article  CAS  Google Scholar 

  6. Jorgensen WL, Chandrasekhar JD, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  7. Joubert L, Popelier PLA (2002) Mol Phys 100:3357–3365

    Article  CAS  Google Scholar 

  8. Karamertzanis PG, Price SL (2006) J Chem Theo Comp 2:1184–1199

    Article  CAS  Google Scholar 

  9. Kedzierski P, Sokalski WA (2001) J Comp Chem 22:1082–1097

    Article  CAS  Google Scholar 

  10. Koch U, Popelier PLA, Stone AJ (1995) Chem Phys Lett 238:253–260

    Article  Google Scholar 

  11. Leslie M (2008) Mol Phys 106:1567–1578

    Article  CAS  Google Scholar 

  12. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub JE, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  13. Mulliken RS (1955) J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  14. Plattner N, Bandi T, Doll JD, Freeman DL, Meuwly M (2008) Mol Phys 106:1675–1684

    Google Scholar 

  15. Plattner N, Meuwly M (2008a) Chem Phys Chem 9:1271–1277

    CAS  Google Scholar 

  16. Plattner N, Meuwly M (2008b) Biophys J 94:2505–2515

    Article  CAS  Google Scholar 

  17. Price SL (1996) J Chem Soc Faraday Trans 92:2997–3008

    Article  CAS  Google Scholar 

  18. Price SL, Stone AJ (1992) JCSF 88:1755–1763

    CAS  Google Scholar 

  19. Ren P, Ponder JW (2002) J Comput Chem 23:14971506

    Article  Google Scholar 

  20. Singh UC, Kollman PA (1984) J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  21. Sokalski WA, Poirier RA (1983) Chem Phys Lett 98:86–92

    Article  CAS  Google Scholar 

  22. Stone AJ (1981) Chem Phys Lett 83:233–239

    Article  CAS  Google Scholar 

  23. Stone AJ (1996) The theory of intermolecular forces. Clarendon, Oxford

    Google Scholar 

  24. Stone AJ (2005) J Chem Theor Comp 1:1128–1132

    Article  CAS  Google Scholar 

  25. Stone AJ, Alderton M (1985) Mol Phys 56:1047–1064

    Article  CAS  Google Scholar 

  26. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S Jr, Weiner P (1984) J Am Chem Soc 106:765

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge financial support from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Meuwly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plattner, N., Meuwly, M. Higher order multipole moments for molecular dynamics simulations. J Mol Model 15, 687–694 (2009). https://doi.org/10.1007/s00894-009-0465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0465-6

Keywords

Navigation