Skip to main content
Log in

Electronic properties of some nitrobenzo[a]pyrene isomers: a possible relationship to mutagenic activity

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ionization potential (IP), electron affinity (EA), dipole moment (μ) and electronic polarizability (α) of 1-, 3- and 6-nitrobenzo[a]pyrene isomers (1-NBaP, 3-NBaP, 6-NBaP) were determined by using density functional theory (DFT) and recent semiempirical PM6 methods. Calculated IP value remains almost constant along the series of isomers, while EA value depends on the nitro group position, increasing by ca. 0.2 eV on passing from 6- to 1-NBaP (or 3-NBaP) isomer. Stability, μ and α values decrease in the order 6-NBaP < 1-NBa ∼ 3-NBaP, the largest μ variation being predicted to be 1.5 D (30%) by DFT computations. The results obtained herein are consistent with the observed greater mutagenic activity of 3- and 1-NBaP in comparison to 6-NBaP isomer, suggesting that both binding to enzyme, which depends on electric properties, and reduction process, which is related to EA value may be crucial steps in the mutagenic mechanism of this series of isomers.

Structure and dipole moment vector of nitrobenzo[a]pyrene isomers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tokiwa H, Ohnishi Y (1986) Crit Rev Toxicol 17:23–60

    Article  CAS  Google Scholar 

  2. Fu PP (1990) Drug Metab Rev 22:209–268

    Article  CAS  Google Scholar 

  3. Chou MW, Heflich RH, Casciano DA, Miller DW, Freeman JP, Evans FE, Fu PP (1984) J Med Chem 27:1156–1161

    Article  CAS  Google Scholar 

  4. Zhan D-J, Chiu L-H, Von Tungeln LS, Herreno-Saenz D, Cheng E, Evans FE, Heflich RH, Fu PP (1997) Mutat Res 379:43–52

    CAS  Google Scholar 

  5. Spain JC (1995) Ann Rev Microbiol 49:523–555

    Article  CAS  Google Scholar 

  6. Parales RE, Ditty JL (2005) Curr Opin Biotechnol (2005) 16:315

    Article  CAS  Google Scholar 

  7. Friemann R, Ivkovic-Jensen MM, Lessner DJ, Yu CL, Gibson DT, Parales RE, Eklund H (2005) J Mol Biol 348:1139–1151

    Article  CAS  Google Scholar 

  8. Li YS, Fu PP, Church JS (2000) J Mol Struct 550–551:217–223

    Article  Google Scholar 

  9. Pitts JN, Lokensgard DM, Harger W, Fisher TS, Mejia V, Schuler JJ, Scorziell GM, Katzenstein YA (1982) Mutat Res 103:241–249

    Article  CAS  Google Scholar 

  10. Fukuhara K, Kurihara M, Miyata N (2001) J Am Chem Soc 123:8662–8666

    Article  CAS  Google Scholar 

  11. Colvert KK, Fu PP (1986) Biochem Biophys Res Commun 141:245–250

    Article  CAS  Google Scholar 

  12. Heflich RH, Unruh LE, Thornton-Manning JR, Von Tungeln LS, Fu PP (1989) Mutat Res 225:157–163

    Article  CAS  Google Scholar 

  13. Hass BS, Heflich RH, Scho HM, Chou MW, Fu PP, Casciano DA (1986) Carcinogenesis 7:681–684

    Article  CAS  Google Scholar 

  14. Horikawa K, Sera N, Murakami K, Sano N, Izumi K, Tokiwa H (1998) Toxicol Lett 98:51–58

    Article  CAS  Google Scholar 

  15. Sera N, Kai M, Horikawa K, Fukuhara K, Miyata N, Tokiwa H (1991) Mutat Res 263:27–32

    Article  CAS  Google Scholar 

  16. Jung H, Shaikh AU, Heflich RH, Fu PP (1991) Environ Mol Mutagen 17:169–180

    Article  CAS  Google Scholar 

  17. Ishii S, Hisamatsu Y, Inazu K, Kobayashi T, Aika K-I (2000) Chemosphere 41:1809–1819

    Article  CAS  Google Scholar 

  18. Warner SD, Lebuis A-M, Farant J-P, Butler IS (2003) J Chem Cryst 33:213–217

    Article  CAS  Google Scholar 

  19. Onchoke KK, Hadad CM, Dutta PK (2006) J Phys Chem A 110:76–84

    Article  CAS  Google Scholar 

  20. Dyker G, Kadzimirsz D, Thoene A (2003) Eur J Org Chem 16:3162–3166

    Article  Google Scholar 

  21. Vance WA, Okamoto HS, Wang YY (1988) In: King CM, Romano LJ, Schuetzle D (eds) Carcinogenic and mutagenic responses to aromatic amines and nitroarenes. Elsevier, New York, pp 291–302

    Google Scholar 

  22. Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Hansch C (1991) J Med Chem 34:786–797

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  24. Lee C, Yang AD, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  25. Stewart JJP (2007) J Mol Model 13:1173–1213

    Article  CAS  Google Scholar 

  26. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  27. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899, and references therein

    Article  CAS  Google Scholar 

  28. De Proft F, Martin JML, Geerlings P (1996) Chem Phys Lett 250:393–401

    Article  Google Scholar 

  29. Stewart JJP, MOPAC 2007, Stewart Computational Chemistry, Colorado Springs, CO, USA, http://OpenMOPAC.net

  30. Karna SP, Dupuis M (1991) J Comput Chem 12:487–504

    Article  CAS  Google Scholar 

  31. Zerner MC (1991) In: Lipkowitz KB, Boyd DB (eds) Review computational chemistry, Vol. 2. VCH, New York, pp 313–366

    Chapter  Google Scholar 

  32. Orr BJ, Ward JF (1971) Mol Phys 20:513–526

    Article  CAS  Google Scholar 

  33. Modelli A, Mussoni L, Fabbri D (2006) J Phys Chem A 110:6482–6486

    Article  CAS  Google Scholar 

  34. Modelli A, Jones D (2006) J Phys Chem A 110:13195–13201

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  37. Koopmans T (1933) Physica 1:104–113

    Article  CAS  Google Scholar 

  38. Klopman G, Tonucci DA, Holloway M Rosenkranz HS (1984) Mutat Res 126:139–144

    CAS  Google Scholar 

  39. Maynard AT, Pedersen LG, Posner HS, McKinney JD (1986) Mol Pharmacol 29:629–636

    CAS  Google Scholar 

  40. Lopez de Compadre RL, Shusterman AJ, Hansch C (1988) Int J Quantum Chem 34:91–101

    Article  CAS  Google Scholar 

  41. Onchoke KK, Hadad CM, Dutta PK (2004) Polycyclic Aromat Compd 24:37–64

    Article  CAS  Google Scholar 

  42. Takamura-Enya T, Suzuki H, Hisamatsu Y (2006) Mutagenesis 21:399–404

    Article  CAS  Google Scholar 

  43. Heinis T, Chowdhury S, Kebarle P (1993) Org Mass Spectrom 28:358–365

    Article  CAS  Google Scholar 

  44. Akiyama I, Li KC, LeBreton PR, Fu PP, Harvey RG (1979) J Phys Chem 83:2997–3003

    Article  CAS  Google Scholar 

  45. Desfrancois C, Periquet V, Lyapustina SA, Lippa TP, Robinson DW, Bowen KH, Nonaka H (1999) J Chem Phys 111:4569–4576

    Article  CAS  Google Scholar 

  46. Kimura K, Katsumata S, Achiba Y, Yamazaki T, Iwata S (1981) In: Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds. Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules. Japan Scientific Soc. Press, Tokyo

    Google Scholar 

  47. Crocker L, Wang TB, Kebarle P (1993) J Am Chem Soc 115:7818–7822

    Article  CAS  Google Scholar 

  48. Klasinc L, Kovac B, Guesten H (1983) Pure Appl Chem 55:289–298

    Article  CAS  Google Scholar 

  49. Ames BN, McCann J, Yamasaki E (1975) Mutat Res 31:347–364

    CAS  Google Scholar 

  50. Maron DM, Ames BN (1983) Mutat Res 113:173–215

    CAS  Google Scholar 

  51. Watanabe M, Ishidate Jr M, Nohmi T (1990) Mutat Res 234:337–348

    CAS  Google Scholar 

  52. Rosenkranz HS, Mermelstein R (1983) Mutat Res 114:217–267

    CAS  Google Scholar 

  53. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091, and references therein

    Article  CAS  Google Scholar 

  54. Pearson RG (1993) Acc Chem Res 26:250–255

    Article  CAS  Google Scholar 

  55. Torrent-Sucarrat M, Luis JM, Duran M, Solà M (2001) J Am Chem Soc 123:7951–7952

    Article  CAS  Google Scholar 

  56. Senthilkumar K, Kolandaivel P (2003) Comput Biol Chem 27:173–183

    Article  CAS  Google Scholar 

  57. Selvarengan P, Kolandaivel P (2005) Bioorg Chem 33:253–263

    Article  CAS  Google Scholar 

  58. Alparone A, Millefiori A, Millefiori S (2005) Chem Phys 312:261–274

    Article  CAS  Google Scholar 

  59. Staikova M, Wania F, Donaldson DJ (2004) Atmos Environ 38:213–225, and references therein

    Article  CAS  Google Scholar 

  60. Smyth CP (1955) Dielectric Behaviour and Structure. McGraw-Hill, New York

    Google Scholar 

  61. Velders GJM, Gillet JM, Becker PJ, Feil D (1991) J Phys Chem 95:8601–8608

    Article  CAS  Google Scholar 

  62. McKinney JD (1989) Environ Health Perspect 82:323–336

    Article  CAS  Google Scholar 

  63. Fraschini E, Bonati L, Pitea D (1996) J Phys Chem 100:10564–10569

    Article  CAS  Google Scholar 

  64. Hirokawa S, Imasaka T, Imasaka T (2005) Chem Res Toxicol 18:232–238

    Article  CAS  Google Scholar 

  65. Librando V, Alparone A (2007) Environ Sci Technol 41:1646–1652

    Article  CAS  Google Scholar 

  66. Librando V, Alparone A (2007) Polycyclic Aromat Compd 27:65–94

    Article  CAS  Google Scholar 

  67. Karelson M, Lobanov VS, Katritzky AR (1996) Chem Rev 96:1027–1044, and references therein

    Article  CAS  Google Scholar 

  68. Singer KD, Garito AF (1981) J Chem Phys 75:3572–3580

    Article  CAS  Google Scholar 

  69. Janssen RHC, Theodorou DN, Raptis S, Papadopoulos MG (1999) J Chem Phys 111:9711–9719

    Article  CAS  Google Scholar 

  70. Chattaraj PK, Sengupta S (1996) J Phys Chem 100:16126–16130

    Article  CAS  Google Scholar 

  71. Minisini B, Fayet G, Tsobnang F, Bardeau JF (2007) J Mol Model 13:1227–1235

    Article  CAS  Google Scholar 

  72. Yu S, Herreno-Saenz D, Miller DW, Heflich RH, Kadlubar FF, Fu PP (1992) Mutat Res 283:45–52

    Article  CAS  Google Scholar 

  73. Librando V, Alparone A (in press) J Hazard Mater , DOI 1016/j.jhazmat.20020

Download references

Acknowledgements

This work was carried out in the framework of the RIC action of the Project No. 1999/IT.16.1.PO.011/3.13/7.2.4/339 PROT. 238, “Formazione per la ricerca nel campo della bonifica dei siti contaminate” POR Sicilia 2000–2006, Asse: III Misura: 3.13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Librando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Librando, V., Alparone, A. & Tomaselli, G. Electronic properties of some nitrobenzo[a]pyrene isomers: a possible relationship to mutagenic activity. J Mol Model 14, 489–497 (2008). https://doi.org/10.1007/s00894-008-0297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0297-9

Keywords

Navigation