Skip to main content
Log in

Probing the interactions of the solvated electron with DNA by molecular dynamics simulations: bromodeoxyuridine substituted DNA

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Solvated electrons (\(e_{aq}^ - \)) are produced during water radiolysis and can interact with biological substrates, including DNA. To augment DNA damage, radiosensitizers such as bromo-deoxyuridine (BUdR), often referred to as an “electron affinic radiosensitizer”, are incorporated in place of isosteric thymidine. However, little is known about the primary interactions of \(e_{aq}^ - \) with DNA. In the present study we addressed this problem by applying molecular modeling and molecular dynamics (MD) simulations to a system of normal (BUdR·A)-DNA and a hydrated electron, where the excess electron was modeled as a localized \(e^ - \)(H2O)6 anionic cluster. Our goals were to evaluate the suitability of the MD simulations for this application; to characterize the motion of \(e_{aq}^ - \) around DNA (e.g., diffusion coefficients); to identify and describe configurational states of close \(e_{aq}^ - \) localization to DNA; and to evaluate the structural dynamics of DNA in the presence of \(e_{aq}^ - \). The results indicate that \(e_{aq}^ - \) has distinct space-preferences for forming close contacts with DNA and is more likely to interact directly with nucleotides other than BUdR. Several classes of DNA - \(e_{aq}^ - \) contact sites, all within the major groove, were distinguished depending on the structure of the intermediate water layer H-bonding pattern (or its absence, i.e., a direct H-bonding of \(e_{aq}^ - \) with DNA bases). Large-scale structural perturbations were identified during and after the \(e_{aq}^ - \) approached the DNA from the major groove side, coupled with deeper penetration of sodium counterions in the minor groove.

A rare configuration showing direct interaction between the solvated electron and DNA, where \(e_{aq}^ - \) (yellow) and N7(A16) are H-bonded. The close \(e_{aq}^ - \) approach from the major groove side invokes deep Na+ (magenta) penetration into the minor DNA groove (Fig. 7a).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. von Sonntag C (2006) Free Radical Induced DNA damage and repair: A chemical perspective, Springer, Berlin

  2. Bernas A, Feradini C, Jay-Gerin JP (1996) Can J Chem 74:1–23

    Article  CAS  Google Scholar 

  3. Clark T, Illing G (1987) J Am Chem Soc 109:1013–1020

    Article  CAS  Google Scholar 

  4. Schnitker J, Rossky PJ (1989) J Phys Chem 93:6965–6969

    Article  CAS  Google Scholar 

  5. Pommeret S, Gauduel Y (1991) J Phys Chem 95:4126–4130

    Article  CAS  Google Scholar 

  6. Tachikawa H, Lund A, Ogasawara M (1993) Can J Chem 71:118–124

    Article  CAS  Google Scholar 

  7. Wong KF, Rossky PJ (2001) J Phys Chem A 105:2546–2556

    Article  CAS  Google Scholar 

  8. Sommerfield T, Jordan KD (2006) J Am Chem Soc 128:5828–5833

    Article  CAS  Google Scholar 

  9. Coe JV, Lee GH, Eaton JG, Arnold ST, Sarkas HW, Bowen KH, Ludewigt C, Haberland H, Worsnop DR (1990) J Chem Phys 92:3980–3982

    Article  CAS  Google Scholar 

  10. Kim J, Becker I, Cheshnovsky O, Johnson MA (1998) Chem Phys Lett 297:90–96

    Article  CAS  Google Scholar 

  11. Kelley JA, Weddle GH, Robertson WH, Johnson MA (2002) J Chem Phys 116:1201–1203

    Article  CAS  Google Scholar 

  12. Tauber MAJ, Mathies RA (2003) J Am Chem Soc 125:1394–1402

    Article  CAS  Google Scholar 

  13. Symons MCR (1988) J Phys Chem 92:7260–7262

    Article  CAS  Google Scholar 

  14. Schlick S, Narayana PA, Kevan L (1976) J Chem Phys 64:3153–3160

    Article  CAS  Google Scholar 

  15. Feng D-F, Kevan L (1980) Chem Rev 80:1–20

    Article  CAS  Google Scholar 

  16. Boudaiffa B, Cloutier P, Hunting DJ, Huels MA, Sanche L (2000) Science 287:1658–1660

    Article  CAS  Google Scholar 

  17. Wagenknecht H-A (2003) Angew Chem Int Ed 42:2454–2460

    Article  CAS  Google Scholar 

  18. Manetto A, Breeger S, Chatgilialoglu C, Carell T (2006) Angew Chem Int Ed 45:318–321

    Article  CAS  Google Scholar 

  19. Cai Z, Sevilla MD (2000) J Phys Chem B 104:6942–6949

    Article  CAS  Google Scholar 

  20. Cook GP, Greenberg MM (1996) J Am Chem Soc 118:10025–10030

    Article  CAS  Google Scholar 

  21. Fuciarelli AF, Sisk EC, Zimbrick JD (1994) Int J Radiat Biol 65:409–418

    Article  CAS  Google Scholar 

  22. Nese C, Yuan Z, Schuchmann MN, von Sonntag C (1992) Int J Radiat Biol 62:527–541

    Article  CAS  Google Scholar 

  23. Colson AO, Sevilla MD (1995) Int J Radiat Biol 67:627–645

    Article  CAS  Google Scholar 

  24. Cecchini S, Girouard S, Huels MA, Sanche L, Hunting DJ (2004) Rad Res 162:604–615

    Article  CAS  Google Scholar 

  25. Cecchini S, Girouard S, Huels MA, Sanche L, Hunting DJ (2005) Biochem 44:1932–1940

    Article  CAS  Google Scholar 

  26. Dextraze M-E, Wagner RJ, Hunting DJ (2007) Biochem 46:9089–9097

    Article  CAS  Google Scholar 

  27. Gantchev TG, Cecchini S, Hunting DJ (2005) J Mol Model 11:141–159

    Article  CAS  Google Scholar 

  28. Young MA, Ravishanker G, Beveridge DL (1997) Biophys J 73:2313–2336

    Article  CAS  Google Scholar 

  29. Westhof E, Rubin-Carrez C, Fritsch V (1995) In: Goodfellow JM (ed) Computer modelling in molecular biology, Chapter 5. Wiley VCH, Weinheim, pp 101–131

    Google Scholar 

  30. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  31. Essman U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen L (1995) J Chem Phys 103:8577–8593

    Article  Google Scholar 

  32. Beveridge DL, Ravishanker G (1994) Curr Opin Struct Biol 4:246–255

    Article  CAS  Google Scholar 

  33. Kollman PA, Dixon R, Cornell W, Fox T, Chipot C, Pohorille, A (1997) 3:83–96 The development/application of a “minimalist” organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data In: Wilkinson A, Weiner N, van Gunsteren W (eds.) Computer simulations of biomolecular systems: Theoretical and experimental applications

  34. Bonvin AMJJ, Sunnerhagen M, Otting G, van Gunsteren WF (1998) J Mol Biol 282:859–873

    Article  CAS  Google Scholar 

  35. Feig M, Montgomery Pettitt B (1999) J Mol Biol 286:1075–1095

    Article  CAS  Google Scholar 

  36. Várnai P, Zakrzewska K (2004) Nucl Acids Res 32:4269–4280

    Article  CAS  Google Scholar 

  37. Sherer EC, Cramer CJ (2004) Theor Chem Acc 111:311–327

    CAS  Google Scholar 

  38. Schmidt KH, Han P, Bartels DN (1995) J Phys Chem 99:10530–10539

    Article  CAS  Google Scholar 

  39. Feig M, Pettitt BM (1998) Biophys J 75:134–149

    CAS  Google Scholar 

  40. Koneshan S, Rasaiah JC, Lynden-Bell RNM, Lee SH (1998) J Phys Chem B 102:4193–4204

    Article  CAS  Google Scholar 

  41. Marcus RA (1998) Acta Chem Scand 52:858–863

    CAS  Google Scholar 

  42. Bertran J, Gallardo I, Moreno M, Savéant J-M (1992) J Am Chem Soc 114:9576–9583

    Article  CAS  Google Scholar 

  43. Close DM (2004) J Phys Chem A 108:10376–10379

    Article  CAS  Google Scholar 

  44. Gaballah ST, Collier G, Netzel TL (2005) J Phys Chem B 109:12175–12181

    Article  CAS  Google Scholar 

  45. Schröder C, Rudas T, Boresch S, Steinhauser O. J. Chem. Phys 124:234907–234907

  46. Pearson RG (1989) J Org Chem 54:1423–1430

    Article  CAS  Google Scholar 

  47. Gantchev TG, van Lier JE, Hunting DJ (2005) Rad Phys Chem 72:367–379

    Article  CAS  Google Scholar 

  48. Yoon C, Prive GG, Goodsell DS, Dickerson RE (1988) Proc Natl Acad Sci USA 85:6332–6336

    Article  CAS  Google Scholar 

  49. Umezawa Y, Nishio M (2002) Nucl Acid Res 30:2183–2192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cancer Research Society (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsvetan G. Gantchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gantchev, T.G., Hunting, D.J. Probing the interactions of the solvated electron with DNA by molecular dynamics simulations: bromodeoxyuridine substituted DNA. J Mol Model 14, 451–464 (2008). https://doi.org/10.1007/s00894-008-0296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0296-x

Keywords

Navigation