Skip to main content

Advertisement

Log in

3D-QSAR and docking studies of 3-arylquinazolinethione derivatives as selective estrogen receptor modulators

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

3D-QSAR and molecular docking analysis were performed to explore the interaction of estrogen receptors (ERα and ERβ) with a series of 3-arylquinazolinethione derivatives. Using the conformations of these compounds revealed by molecular docking, CoMFA analysis resulted in the first quantitative structure-activity relationship (QSAR) and first quantitative structure-selectivity relationship (QSSR) models predicting the inhibitory activity against ERβ and the selectivity against ERá. The q2 and R2 values, along with further testing, indicate that the obtained 3D-QSAR and 3D-QSSR models will be valuable in predicting both the inhibitory activity and selectivity of 3-arylquinazolinethione derivatives for these protein targets. A set of 3D contour plots drawn based on the 3D-QSAR and 3D-QSSR models reveal modifications of substituents at C2 and C5 of the quinazoline which my be useful to improve both the activity and selectivity of ERβ/ ERα. Results showed that both the steric and electrostatic factors should appropriately be taken into account in future rational design and development of more active and more selective ERβ inhibitors for the therapeutic treatment of osteoporosis.

Structures of ERβ binding with compounds 1aar, 1ax and 1aag obtained from molecular docking

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Robinson-Rechavi M, Escriva GH, Laudet V (2003) J Cell Sci 116:585–586

    Article  Google Scholar 

  2. Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-A (1996) Proc Natl Acad Sci 93:5925–5930

    Article  CAS  Google Scholar 

  3. Mosselman S, Polman J, Dijkema R (1996) FEBS Lett 392:49–53

    Article  CAS  Google Scholar 

  4. Kuiper GGJM, Gustafsson J-A (1997) FEBS Lett 410:87–90

    Article  CAS  Google Scholar 

  5. Kuiper GGJM, Carlsson B, Grandien K, Enmark E, Haeggblad J (1997) 138:863–870

  6. Dechering K, Boersma Ch, Mosselman S (2000) Curr Med Chem 7:561–576

    CAS  Google Scholar 

  7. Subhendu M, Achintya S, Kunal R (2005) BMC Lett 15:957–961

    Google Scholar 

  8. Timur G, Chen Y, Rajasree G, Ma ZP, James RC (2006) J Med Chem 49:2440–2455

    Article  Google Scholar 

  9. Yang GF, Lu HT, Xiong Y, Zhan CG (2006) BMC 14:1462–1473

    CAS  Google Scholar 

  10. Irwin RA, Menezes AT, Carlos AM (2006) STEROIDS 71:417–428

    Article  Google Scholar 

  11. Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engstrom O, Ljunggren J, Gustafsson JA, Carlquist M (1999) Embo J. 18:4608–4618

    Article  CAS  Google Scholar 

  12. Manual S, Louis MO (2005) Tripos Inc Sybyl 7.1

  13. Goodsell DS, Olson AJ (1990) 8:195–202

  14. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) 10:293–304

  15. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comp Chem 19:1639–1662

    Article  CAS  Google Scholar 

  16. Solis FJ, Wets RJ (1981) B. Maths Pera Res 6:19–30

    Google Scholar 

  17. Weiner SJ, Kollman PA, Case DA, Singh C, Ghio G, Alagona S, Profeta P, Weiner PJ (1984) Am Chem Soc 106:765–771

    Article  CAS  Google Scholar 

  18. Hu WX, Yun LH (1992) Chin Chem Lett 3:271–280

    CAS  Google Scholar 

  19. Pauling P, Datta N, Ramsay W, Forster R (1980) Proc Natl Acad Sci USA 77:708–721

    Article  CAS  Google Scholar 

  20. Liu GX, Zhang ZS, Luo XM, Shen JH, Liu H, Shen X, Chen KX, Jiang HL (2004) BMC 12:1447–1457

    Google Scholar 

  21. Hawkins DM, Basak SC, Mills D (2003) J Chem Inf Comput Sci 43:579–586

    Article  CAS  Google Scholar 

  22. Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269–276

    Article  CAS  Google Scholar 

  23. Parker MA, Lewicka DM, Lucaites VL, Nelson DL, Nichols DE (1998) J Med Chem 41:5148–5162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific Research Common Program of Beijing Municipal Commission of Education. The authors are grateful to the kind help of Dr. Yuandong Hu and Miss Mei Zhou, Beijing Hongcam Software Technologies Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoyong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, A., Zhang, Z., An, L. et al. 3D-QSAR and docking studies of 3-arylquinazolinethione derivatives as selective estrogen receptor modulators. J Mol Model 14, 149–159 (2008). https://doi.org/10.1007/s00894-007-0264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0264-x

Keywords

Navigation