Skip to main content
Log in

Topological research on diamagnetic susceptibilities of organic compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A novel molecular connectivity index, \( ^{m} \chi \prime \), based on the adjacency matrix of molecular graphs and novel atomic valence connectivities, \( \delta ^{\prime }_{i} \), for predicting the molar diamagnetic susceptibilities of organic compounds is proposed. The \( \delta ^{\prime }_{i} \) is defined as: \( \delta _{i} \prime = \delta _{i} ^{v} \cdot {E_{i} } \mathord{\left/ {\vphantom {{E_{i} } {12.625}}} \right. \kern-\nulldelimiterspace} {12.625} \), where \( \delta ^{v}_{i} \) and Ei are the atomic valence connectivity and the valence orbital energy of atom i, respectively. A good QSPR model for molar diamagnetic susceptibilities can be constructed from \( ^{0} \chi \prime ,^{1} \chi \prime ,^{2} \chi \prime \) and \( ^{4} \chi ^{\prime }_{p} \) using multivariate linear regression (MLR). The correlation coefficient r, standard error, and average absolute deviation of the MLR model are 0.9918, 5.56 cgs, and 4.26 cgs, respectively, for the 721 organic compounds tested (training set). Cross-validation using the leave-one-out method demonstrates that the MLR model is highly reliable statistically. Using the MLR model, the average absolute deviations of the predicted values of molar diamagnetic susceptibility of another 360 organic compounds (test set) is 4.34 cgs. The results show that the current method is more effective than literature methods for estimating the molar diamagnetic susceptibility of an organic compound. The MLR method thus provides an acceptable model for the prediction of molar diamagnetic susceptibilities of organic compounds.

Plot of calculated vs experimental values of molar diamagnetic susceptibilities using the multivariate linear regression (MLR) model (Eq. 8)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Atkins AT (1986) Physical chemistry, 3rd edn. Oxford University Press, Oxford, p 699

    Google Scholar 

  2. Sellwood PW (1956) Magnetochemistry, Interscience, New York

    Google Scholar 

  3. Dorfman YG (1965) Diamagnetism and the chemical bond. Arnold, London

    Google Scholar 

  4. Vulfsan SG (1998) Molecular magnetochemistry. Gordon & Breach, Amsterdam

    Google Scholar 

  5. Simion DV, Sorensen TS (1996) J Am Chem Soc 118:7345–7352

    Article  CAS  Google Scholar 

  6. Ania F, Balta-Calleja FJ (1992) Stud Phys Theor Chem 77:527–554

    CAS  Google Scholar 

  7. Katsuki A, Tokunaga R, Watanabe S, Tanimoto Y (1996) Chem Lett 607–608

  8. Mccarthy MJ, Zion B, Chen P, Ablett S, Darke AH, Lillford PJ (1995) J Sci Food Agric 67:13–20

    Article  CAS  Google Scholar 

  9. Ligabue A, Soncini A, Lazzeretti P (2002) J Am Chem Soc 124(9):2008–2014

    Article  CAS  Google Scholar 

  10. Putz MV, Russo N, Sicilia E (2003) J Phys Chem A 107(28):5461–5465

    Article  CAS  Google Scholar 

  11. Hameka HF (1961) J Chem Phys 34:1996–2000

    Article  CAS  Google Scholar 

  12. O’Sullivan PS, Hameka HF (1970) J Am Chem Soc 92:25–32

    Article  CAS  Google Scholar 

  13. O’Sullivan PS, Hameka HF (1970) J Am Chem Soc 92:1821–1824

    Article  CAS  Google Scholar 

  14. Stockham ME, Hameka HF (1972) J Am Chem Soc 94:4076–4078

    Article  CAS  Google Scholar 

  15. Haley LV, Hameka HF (1974) J Am Chem Soc 96:2020–2024

    Article  CAS  Google Scholar 

  16. Segal GA (1977) Semiempirical methods of electronic structure calculation: applications, vol 8. Part B. Modem theoretical chemistry. Plenum, New York

    Google Scholar 

  17. Pollock EL, Runge KJ (1992) J Chem Phys 96:674–680

    Article  Google Scholar 

  18. Romera E, Dehesa JS (1994) Phys Rev A 50:256–266

    Article  CAS  Google Scholar 

  19. Sulzbach HM, Schleyer PV, Jiao HJ, Xie YM, Schaefer HF (1995) J Am Chem Soc 117:1369–1373

    Article  CAS  Google Scholar 

  20. De Luca G, Russo N, Sicilia E, Toscano M (1996) J Chem Phys 105:3206–3210

    Article  Google Scholar 

  21. King JW, Molnar SP (1997) J Quantum Chem 64:635–645

    Article  CAS  Google Scholar 

  22. Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic, New York

    Google Scholar 

  23. Schmalz TG, Klein DJ, Sandleback BL (1992) J Chem Inf Comput Sci 32:54–57

    Article  CAS  Google Scholar 

  24. Li LF, Zhang Y, You XZ (1995) J Chem Inf Comput Sci 35:697–700

    Article  CAS  Google Scholar 

  25. Estrada E (1998) J Chem Soc Faraday Trans 94:1407–1410

    Article  CAS  Google Scholar 

  26. Estrada E, Gutierrez Y (1999) J Chromatogr A 858:187–199

    Article  CAS  Google Scholar 

  27. Estrada E, Gutierrez Y, González H (2000) J Chem Inf Comput Sci 40:1386–1399

    Article  CAS  Google Scholar 

  28. You XZ (1992) Structure and properties of coordination compounds. Science, Beijing

    Google Scholar 

  29. Wiener H (1947) J Am Chem Soc 69:17–20

    Article  CAS  Google Scholar 

  30. Randić M (1975) J AmChem Soc 97:6609–6615

    Article  Google Scholar 

  31. Kier LB, Hall LH (1986) Molecular connectivity in structure–activity analysis. Research Studies, Letchworth, England

    Google Scholar 

  32. Klein DJ (1986) Int J Quant Chem S20:153–171

    Article  Google Scholar 

  33. Balaban AT (1992) J Chem Inf Comput Sci 32:23–28

    Article  CAS  Google Scholar 

  34. Mu LL, Feng CJ (2003) Chin J Chem Phys 16:19–24

    CAS  Google Scholar 

  35. Feng CJ (2000) Chin J Chem Phys 13:66–70

    CAS  Google Scholar 

  36. Feng CJ (2002) Chin J Anal Sci 18:27–32

    CAS  Google Scholar 

  37. Feng CJ (1999) Chin J Mol Sci 15:223–228

    CAS  Google Scholar 

  38. Feng CJ, Chen Y (2000) Chin J Mol Sci 16:177–183

    CAS  Google Scholar 

  39. Mu LL, Feng CJ, He HM (2006) MATCH Commun Math Comput Chem 56:97–111

    CAS  Google Scholar 

  40. Mu LL, He HM, Feng CJ (2006) Chin J Chem 24:855–861

    Article  CAS  Google Scholar 

  41. Qing ZL, Feng CJ (2002) Chin J Anal Sci 18(4):303–305

    Google Scholar 

  42. Feng CJ, Yang WH (2005) Chin J Chem Res 16(2):88–92

    CAS  Google Scholar 

  43. Mu LL, Feng CJ, He HM (2007) MATCH Commun Math Comput Chem 58 (3):591–607

    CAS  Google Scholar 

  44. Mu LL, He HM, Feng CJ (2007) Chin J Chem 25:743–750

    Article  CAS  Google Scholar 

  45. Nie CM, Wen SN, Li ZH, Xie SB, Wang HQ (2002)Acta Chim Sin 60(2):207–214

    CAS  Google Scholar 

  46. David RL, Grace B, Lev IB, Robert NG, Henry VK, Kozo K, Gerd R, Dana LR, Daniel Z (2002) CRC Handbook of Chemistry and Physics, 85th edn. CRC, Boca Raton, pp 4.143–4.148

  47. Yao YB, Xie T, Gao YM (1985) Handbook of Physical Chemistry. Shanghai Technology, Shanghai, pp 247–276

    Google Scholar 

  48. Lawrence VH, Hendrik FH (1974) J Am Chem Soc 96(7):2020–2024

    Article  Google Scholar 

  49. Hyp JDJ, James DW, John LL (1969) J Am Chem Soc 91(8):1991–1998

    Article  Google Scholar 

  50. González MP, Helguera AM, Cabrera MA (2005) Bioorg Med Chem 13:1775–1781

    Article  Google Scholar 

  51. González MP, Dias LC, Helguera AM, Rodriguez YM, De Oliveira LG, Gomez LT, Diaz HG (2004) Bioorg Med Chem 12:4467–4475

    Article  Google Scholar 

  52. Molina E, Diaz HG, González MP, Rodriguez E, Uriarte E(2004) J Chem Inf Comput Sci 44:515–521

    Article  CAS  Google Scholar 

  53. González MP, Gonzalez Diaz H, Molina Ruiz R, Cabrera MA, Ramos de Armas R (2003) J Chem Inf Comput Sci 43:1192–1199

    Article  Google Scholar 

  54. González MP, Terán C, Fall Y, Diaz LC, Morales AH (2005) Polymer 46:2783–2790

    Article  Google Scholar 

  55. Saiz-Urra L, González MP, Teijeira M (2006) Bioorg Med Chem 14:7347–7358

    Article  CAS  Google Scholar 

  56. Saiz-Urra L, González MP, Teijeira M (2007) Bioorg Med Chem 15:3565–3571

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the University Natural Science Foundation of Jiangsu Province in China (contract grant number: 04KJD150195). The authors express our gratitude to the referees for their value comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lailong Mu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, L., Feng, C. & He, H. Topological research on diamagnetic susceptibilities of organic compounds. J Mol Model 14, 109–134 (2008). https://doi.org/10.1007/s00894-007-0256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0256-x

Keywords

Navigation