Skip to main content
Log in

A novel QSPR model for predicting θ (lower critical solution temperature) in polymer solutions using molecular descriptors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, we present a new model that has been developed for the prediction of θ (lower critical solution temperature) using a database of 169 data points that include 12 polymers and 67 solvents. For the characterization of polymer and solvent molecules, a number of molecular descriptors (topological, physicochemical, steric and electronic) were examined. The best subset of descriptors was selected using the elimination selection-stepwise regression method. Multiple linear regression (MLR) served as the statistical tool to explore the potential correlation among the molecular descriptors and the experimental data. The prediction accuracy of the MLR model was tested using the leave-one-out cross-validation procedure, validation through an external test set and the Y-randomization evaluation technique. The domain of applicability was finally determined to identify the reliable predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. (a) Charlet G, Delmas G (1981) Polymer 22:1181–1189; (b) Charlet G, Ducasse R, Delmas G (1981) Polymer 22:1190–1198

    Article  CAS  Google Scholar 

  2. Christensen SP, Donate FA, Frank TC, LaTulip RJ, Wilson LC (2005) J Chem Eng Data 50:869–877

    Article  CAS  Google Scholar 

  3. Kavanagh CA, Rochev YA, Gallagher WM, Dawson KA, Keenan AK (2004) Pharmacol Ther 102:1–15

    Article  CAS  Google Scholar 

  4. Kopecek J (2003) Eur J Pharm Sci 20:1–16

    Article  CAS  Google Scholar 

  5. Chang BH, Bae CY (1998) Polymer 39:6449–6454

    Article  CAS  Google Scholar 

  6. Pappa GD, Voutsas EC, Tassios DP (2001) Ind Eng Chem Res 40:4654–4663

    Article  CAS  Google Scholar 

  7. Bogdanic G, Vidal J (2000) Fluid Phase Equilib 173:241–252

    Article  CAS  Google Scholar 

  8. Wang F, Saeki S, Yamaguchi T (1999) Polymer 40:2779–2785

    Article  CAS  Google Scholar 

  9. Vetere A (1998) Ind Eng Chem Res 37:4463–4469

    Article  CAS  Google Scholar 

  10. Imre AR, Bae YC, Chang BH, Kraska Th (2004) Ind Eng Chem Res 43:237–242

    Article  CAS  Google Scholar 

  11. Liu H, Zhong C (2005) Eur Polym J 41:139–147

    Article  CAS  Google Scholar 

  12. Liu H, Zhong C (2005) Ind Eng Chem Res 44:634–638

    Article  CAS  Google Scholar 

  13. Melagraki G, Afantitis A, Sarimveis H, Igglessi-Markopoulou O, Supuran CT (2006) Bioorg Med Chem 14:1108–1114

    Article  CAS  Google Scholar 

  14. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O (2005) Mol Divers (In press) DOI: 10.1007/s11030-005-9012-2

  15. Afantitis A, Melagraki G, Makridima K, Alexandridis A, Sarimveis H, Igglessi-Markopoulou O (2005) J Mol Struct Theochem 716:193–198

    Article  Google Scholar 

  16. Melagraki G, Afantitis A, Makridima K, Sarimveis H, Igglessi-Markopoulou O (2005) J Mol Model 12:297–305

    Article  Google Scholar 

  17. Al-Fahemi JH, Cooper DL, Allan NL (2005) J Mol Struct Theochem 727:57–61

    Article  CAS  Google Scholar 

  18. Villanueva-Garcıa M, Gutierrez-Parra RN, Martınez-Richa A, Robles J (2005) J Mol Struct Theochem 727:63–69

    Article  Google Scholar 

  19. CambridgeSoft Corporation (http://www.cambridgesoft.com)

  20. Efron B (1983) J Am Stat Assoc 78:316–331

    Article  Google Scholar 

  21. Efroymson MA (1960) Multiple regression analysis. In: Ralston A, Wilf HS (eds) Mathematical methods for digital computers. Wiley, New York, pp 191–203

    Google Scholar 

  22. Osten DW (1998) J Chemom 2:39–48

    Article  Google Scholar 

  23. Wold S, Eriksson L (1995) Statistical validation of QSAR results. In: van de Waterbeemd H (ed) Chemometrics methods in molecular design. VCH, Weinheim, pp 309–318

    Google Scholar 

  24. Tropsha A, Gramatica P, Gombar VK (2003) Quant Struct-Act Relatsh 22:1–9

    Google Scholar 

  25. Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269–276

    Article  CAS  Google Scholar 

  26. Shen M, Beguin C, Golbraikh A, Stables J, Kohn H, Tropsha A (2004) J Med Chem 47:2356–2364

    Article  CAS  Google Scholar 

  27. Atkinson A (1985) Plots, transformations and regression. Clarendon, Oxford, p 282

    Google Scholar 

Download references

Acknowledgements

G.M. wishes to thank the Greek State Scholarship Foundation for a doctoral assistantship. A.A. wishes to thank Cyprus Research Promotion Foundation (grant no. PENEK/ENISX/0603/05) and A.G. Leventis Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haralambos Sarimveis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melagraki, G., Afantitis, A., Sarimveis, H. et al. A novel QSPR model for predicting θ (lower critical solution temperature) in polymer solutions using molecular descriptors. J Mol Model 13, 55–64 (2007). https://doi.org/10.1007/s00894-006-0125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0125-z

Keywords

Navigation