Skip to main content
Log in

Prototropic tautomerism of imidazolone in aqueous solution: a density functional approach using the combined discrete/self-consistent reaction field (SCRF) models

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A systematic investigation of the proton transfer in the keto-amino/enol tautomerization of imidazolone was undertaken. Calculations in aqueous solution were performed using both combined discrete/self-consistent reaction field (SCRF) and SCRF methods. Complexes containing one to three water molecules around the hydrophilic site of imidazolone were used for the combined discrete/SCRF calculations. The DFT results predict that the barrier height for non-water-assisted intramolecular proton transfer is very high (214.8 kJmol−1). Hydrogen bonding between imidazolone and the water molecule(s) will dramatically lower the barrier by a concerted multiple proton transfer mechanism. The proton transfer process through a eight-member ring formed by imidazolone and two water molecules is found to be more efficient and the calculated barrier height is ca. 61 kJmol−1.

Figure DFT calculations in aqueous solution predict the H-bonding between imidazolone(IZ) and the water molecule(s) will dramatically lower the tautomeric barrier by a concerted multiple proton transfer mechanism, in which an eight-member ring structure formed by IZ and 2H2O is found to be more efficient and the barrier is 60.8 kJ mol−1, much less than 214.8 kJ mol−1 in the non-water-assisted mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Douhal A, Lahmani F, Zewail AH (1996) Chem Phys 207:477–498 and references therein

    Google Scholar 

  2. Limbach HH, Manz J (1998) Special issue on hydrogen transfer: experiment and theory. Ber Bunsenges Phys Chem 102:289–592 (editorial)

    Google Scholar 

  3. Agmon N (1999) Isr J Chem 39:493–502

    Google Scholar 

  4. Smith BJ, Nguyen MT, Bouma WJ, Radom L (1991) J Am Chem Soc 113:6452–6458

    Google Scholar 

  5. Wiberg KB, Breneman CM, LePage TJ (1990) J Am Chem Soc 112:61–72

    Google Scholar 

  6. Gorb L, Leszczynski J (1998) J Am Chem Soc 120:5024–5032

    Google Scholar 

  7. Alemán C (2000) Chem Phys 253:13–19

    Google Scholar 

  8. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    CAS  Google Scholar 

  9. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200

    Google Scholar 

  10. Barone V, Cossi M, Mennucci B, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  11. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  Google Scholar 

  12. Fernandez-Ramos A, Smedarchina Z, Siebrand W, Zgierski MZ (2000) J Chem Phys 113:9714–9721

    Google Scholar 

  13. Smedarchina Z, Siebrand W, Femandez-Ramos A, Gorb L, Leszczynski J (2000) J Chem Phys 112:566–573

    Google Scholar 

  14. Tunon I, Silla E, Millot C, Martins-Costa MTC, Ruiz-Lopez MF (1998) J Phys Chem A 102:8673–8678

    Google Scholar 

  15. Gontrani L, Mennucci B, Tomasi J (2000) THEOCHEM J Mol Struct 500:113–127

    Google Scholar 

  16. Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E, Suhai S (2001) Chem Phys 265:125–151

    Google Scholar 

  17. Kassab E, Langlet J, Evieth E, Akacem Y (2000) THEOCHEM J Mol Struct 531:267–282

    Google Scholar 

  18. Alemán C (2000) Chem Phys 253:13–19

    Google Scholar 

  19. Ahn DS, Park SW, Jeon IS, Lee MK, Kim NH, Han YH, Lee S (2003) J Phys Chem B 107:14019–14118

    Google Scholar 

  20. Dominianni SJ, Yen TT (1989) J Med Chem 32:2301–2306

    Google Scholar 

  21. Moon MW, Chidester CG, Heier RF, Morris, JK, Collins RJ (1991) J Med Chem 34:2314–2327

    Google Scholar 

  22. Naylor EM, Parmee ER, Colandrea VJ, Perkins L, Brockunier L, Candelore MR, Cascieri MA, Colwell Jr LF, Deng L, Feeney WP, Forrest MJ, Hom GJ, MacIntyre DE, Stroder CD, Tota L, Wang PR, Wyvratt MJ, Fisher MH, Weber AE (1999) Bioorg Med Chem Lett 9:755–758

    Google Scholar 

  23. Contreras JG, Madariaga ST (2003) J Phys Org Chem 16:47–52

    Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  25. Shishkin OV, Gorb L, Leszczynski J (2000) J Phys Chem B 104:5357–5361

    Google Scholar 

  26. Dubis AT, Grabowski SJ, Romanowska DB, Misiaszek T, Leszczynski J (2002) J Phys Chem A 106:10613–10621

    Google Scholar 

  27. Lukin O, Leszczynski J (2002) J Phys Chem A 106:6775–6782

    Google Scholar 

  28. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  29. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Google Scholar 

  30. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073

    Google Scholar 

  31. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Google Scholar 

  32. Ahn DS, Lee S, Kim B (2004) Chem Phys Lett 390:384–388

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Foundation of Chongqing City, PRC (2002–7473).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Li, M. & Wong, NB. Prototropic tautomerism of imidazolone in aqueous solution: a density functional approach using the combined discrete/self-consistent reaction field (SCRF) models. J Mol Model 11, 167–173 (2005). https://doi.org/10.1007/s00894-005-0242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0242-0

Keywords

Navigation