Skip to main content
Log in

Molecular docking study on the “back door” hypothesis for product clearance in acetylcholinesterase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) is one of the fastest enzymes known, even though the active site is buried inside the protein at the end of a 20-Å deep narrow gorge. Among the great variety of crystal structures of this enzyme, both in the absence and presence of various ligands and proteins, the structure of a complex of AChE with the pseudo-irreversible inhibitor Mf268 is of particular interest, as it assists in the proposal of a back door for product clearance from the active site. Binding of Mf268 to AChE results in the carbamoylation of Ser200 and liberation of an eseroline-fragment as the leaving group. The crystal structure of the AChE-Mf268 complex, however, proves that eseroline has escaped from the enzyme, despite the fact that the Ser-bound inhibitor fragment blocks the gorge entrance. The existence of alternative routes other than through the gorge for product clearance has been postulated but is still controversially discussed in the literature, as an experimental proof for such a back door is still missing. We have used Monte Carlo-based molecular docking methods in order to examine possible alternative pathways that could allow eseroline to be released from the protein after being cleaved from the substrate by Ser200. Based on our results, a short channel at the bottom of the gorge seems to be the most probable back-door site, which begins at amino acid Trp84 and ends at the enzyme surface in a cavity close to amino acid Glu445.

Cross-section view of the gorge and the alternative channel with (from left to right): DMPO-fragment (green) in the gorge, eseroline (brown) in front of the back door channel after it has been cleaved off from Mf268, Trp84 (grey) as the putative gate to the channel, Met83 (grey) as the only amino acid between the back door and the exit of the channel, eseroline (blue) in the cavity that represents the exit site of the channel

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Taylor P, Radic Z (1994) Annu Rev Pharmacol Toxicol 34:281–320

    Article  PubMed  CAS  Google Scholar 

  2. Selkoe DJ (2002) Science 298:789–791

    Article  PubMed  CAS  Google Scholar 

  3. Harvey AL (1995) Pharmacol Ther 68:113–128

    Article  PubMed  CAS  Google Scholar 

  4. Bartolucci C, Perola E, Pilger C, Fels G, Lamba D (2001) Proteins 42:182–191

    Article  PubMed  CAS  Google Scholar 

  5. Greenblatt HM, Kryger G, Lewis T, Silman I, Sussman JL (1999) FEBS Lett 463:321–326

    Article  PubMed  CAS  Google Scholar 

  6. Rogers SL, Friedhoff LT (1998) 8:67–75

  7. Kryger G, Silman I, Sussman JL (1999) Structure 7:297–307

    Article  PubMed  CAS  Google Scholar 

  8. Farlow M, Anand R, Messina JJ, Hartman R, Veach J (2000) Eur Neurol 44:236–241

    Article  PubMed  CAS  Google Scholar 

  9. Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL, Silman I (2002) Biochemistry 41:3555–3564

    Article  PubMed  CAS  Google Scholar 

  10. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  11. Munoz FJ, Aldunate R, Inestrosa NC (1999) Neuroreport 10:3621–3625

    Article  PubMed  CAS  Google Scholar 

  12. Felder CE, Botti SA, Lifson S, Silman I, Sussman JL (1997) J Molec Graphics & Model 15:318–327

    Article  PubMed  CAS  Google Scholar 

  13. Botti SA, Felder CE, Lifson S, Sussman JL, Silman I (1999) Biophys J 77:2430–2450

    PubMed  CAS  Google Scholar 

  14. Xu YC, Shen JH, Luo XM, Silman I, Sussman JL, Chen KX, Jiang HL (2003) J Am Chem Soc 125:11340–11349

    Article  PubMed  CAS  Google Scholar 

  15. Bartolucci C, Perola E, Cellai L, Brufani M, Lamba D (1999) Biochemistry 38:5714–5719

    Article  PubMed  CAS  Google Scholar 

  16. Perola E, Cellai L, Lamba D, Filocamo L, Brufani M (1997) Biochim Biophys Acta 1343:41–50

    PubMed  CAS  Google Scholar 

  17. Axelsen PH, Harel M, Silman I, Sussman JL (1994) Protein Sci 3:188–197

    PubMed  CAS  Google Scholar 

  18. Gilson MK, Straatsma TP, McCammon JA, Ripoll DR, Faerman CH, Axelsen P, Silman I, Sussman JL (1994) Science 263:1276–1278

    Article  PubMed  CAS  Google Scholar 

  19. Ripoll DR, Faerman CH, Axelsen P, Silman I, Sussman J (1993) Proc Natl Acad Sci USA 90:5128–5132

    Article  PubMed  CAS  Google Scholar 

  20. Tai K, Shen TY, Borjesson U, Philippopoulos M, McCammon JA (2001) Biophys J 81:715–724

    Article  PubMed  CAS  Google Scholar 

  21. van Belle D, de Maria L, Iurcu G, Wodak SJ (2000) J Mol Biol 298:705–726

    Article  PubMed  CAS  Google Scholar 

  22. Boyd AE, Dunlop CS, Wong L, Radic Z, Taylor P, Johnson DA (2004) J Biol Chem 279:26612–26618

    Article  PubMed  CAS  Google Scholar 

  23. Greenblatt HM, Guillo C, Guenard D, Argaman A, Botti S, Badet B, Thal C, Silman I, Sussman JL (2004) J Am Chem Soc 126:15405–15411

    Article  PubMed  CAS  Google Scholar 

  24. Kronman C, Ordentlich A, Barak D, Velan B, Shafferman A (1994) J Biol Chem 169:27819–27822

    Google Scholar 

  25. Faerman C, Ripoll DR, Bon S, LeFeuvre Y, Morel N, Massoulie J, Sussman JL, Silman I (1996) FEBS Lett 386:65–71

    Article  PubMed  CAS  Google Scholar 

  26. Simon S, le Goff A, Frobert Y, Grassi J, Massoulie J (1999) J Biol Chem 274:27740–27746

    Article  PubMed  CAS  Google Scholar 

  27. Shen TY, Tai K, McCammon JA (2001) Phys Rev E 63:041902–041908

    Article  CAS  Google Scholar 

  28. Tai K, Shen T, Henchman RH, Bourne Y, Marchot P, McCammon JA (2002) J Amer Chem Soc 124:6153–6161

    Article  CAS  Google Scholar 

  29. Tara S, Straatsma TP, McCammon JA (1999) Biopolymers 50:35–43

    Article  PubMed  CAS  Google Scholar 

  30. Wlodek ST, Clark TW, Scott LR, McCammon JA (1997) J Am Chem Soc 119:9513–9522

    Article  CAS  Google Scholar 

  31. McMartin C, Bohacek RS (1997) J Comput Aided Mol Des 11:333–344

    Article  PubMed  CAS  Google Scholar 

  32. Alisaraie L, Fels G (2005) in preparation

  33. Vigny M, Bon S, Massouliè J, Leterrier F (1978) Eur J Biochem 85:317–323

    Article  PubMed  CAS  Google Scholar 

  34. Bui JM, Tai K, McCammon JA (2004) J Am Chem Soc 126:7198–7205

    Article  PubMed  CAS  Google Scholar 

  35. Kua J, Zhang Y, McCammon JA (2002) J Am Chem Soc 124:8260–8267

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Fels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alisaraie, L., Fels, G. Molecular docking study on the “back door” hypothesis for product clearance in acetylcholinesterase. J Mol Model 12, 348–354 (2006). https://doi.org/10.1007/s00894-005-0051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0051-5

Keywords

Navigation