Skip to main content

Advertisement

Log in

In silico study of tacrine and acetylcholine binding profile with human acetylcholinesterase: docking and electronic structure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Alzheimer disease (AD) is a neurodegenerative process, one of the most common and incident dementia in the population over 60 years. AD manifests the presence of complex biochemical processes involved in neuronal degeneration, such as the formation of senile plaques containing amyloid-β peptides, the development of intracellular neurofibrillary tangles, and the suppression of the acetylcholine neurotransmitter. In this way, we performed a set of theoretical tests of tacrine ligand and acetylcholine neurotransmitter against the human acetylcholinesterase enzyme. Molecular docking was used to understand the most important interactions of these molecules with the enzyme. Computational chemistry calculation was carried out using MP2, DFT, and semi-empirical methods, starting from molecular docking structures. We have also performed studies regarding the non-covalent interactions, electron localization function, molecular electrostatic potential and explicit water molecule influence. For Trp86 residue, we show two main interactions in accordance to the results of the literature for TcAChE. First, intermolecular interactions of the cation-π and sigma-π type were found. Second, close stacking interactions were stablished between THA+ and Trp86 residue on one side and with Tyr337 residue on the other side.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hou Y, Dan X, Babbar M et al (2019) (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 1510(15):565–581. https://doi.org/10.1038/s41582-019-0244-7

    Article  Google Scholar 

  2. Weis S, Sonnberger M, Dunzinger A, et al (2019) Neurodegenerative diseases: Alzheimer disease (AD). Imaging Brain Dis 897–931. https://doi.org/10.1007/978-3-7091-1544-2_32

  3. Zhang H-L, Wu J, Zhu J (2010) The immune-modulatory role of apolipoprotein E with emphasis on multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Dev Immunol 2010:186813. https://doi.org/10.1155/2010/186813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu C-C, Kanekiyo T, Xu H (2013) Bu G (2013) Apolipoprotein E and Alzheimer disease: risk mechanisms and therapy. Nat Rev Neurol 92(9):106–118. https://doi.org/10.1038/nrneurol.2012.263

    Article  CAS  Google Scholar 

  5. Lm B, Ce Y, Td B, DW T, (2010) Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23:213–227. https://doi.org/10.1177/0891988710383571

    Article  Google Scholar 

  6. Martorana A, Esposito Z, Koch G (2010) Beyond the cholinergic hypothesis: do current drugs work in Alzheimer’s disease? CNS Neurosci Ther 16:no--no https://doi.org/10.1111/j.1755-5949.2010.00175.x

  7. Cummings JL, Cole G (2002) Alzheimer disease. J Am Med Assoc 287:2335–2338

    Article  CAS  Google Scholar 

  8. Nascimento ECM, Martins JBL, dos Santos ML, Gargano R (2008) Theoretical study of classical acetylcholinesterase inhibitors. Chem Phys Lett 458:285–289. https://doi.org/10.1016/j.cplett.2008.05.006

    Article  CAS  Google Scholar 

  9. Ohno-Shosaku T, Matsui M, Fukudome Y et al (2003) Postsynaptic M1 and M3 receptors are responsible for the muscarinic enhancement of retrograde endocannabinoid signalling in the hippocampus. Eur J Neurosci 18:109–116. https://doi.org/10.1046/j.1460-9568.2003.02732.x

    Article  PubMed  Google Scholar 

  10. Yi JH, Whitcomb DJ, Park SJ, et al (2020) M1 muscarinic acetylcholine receptor dysfunction in moderate Alzheimer’s disease pathology. Brain Commun 2 https://doi.org/10.1093/braincomms/fcaa058

  11. Suzuki E, Momiyama T (2021) M1 muscarinic acetylcholine receptor-mediated inhibition of GABA release from striatal medium spiny neurons onto cholinergic interneurons. Eur J Neurosci 53:796–813. https://doi.org/10.1111/ejn.15074

    Article  CAS  PubMed  Google Scholar 

  12. Baxter MG, Crimins JL (2018) Acetylcholine receptor stimulation for cognitive enhancement: better the devil you know? Neuron 98:1064–1066. https://doi.org/10.1016/j.neuron.2018.06.018

    Article  CAS  PubMed  Google Scholar 

  13. Anand P, Singh B (2013) A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res 36:375–339. https://doi.org/10.1007/s12272-013-0036-3

  14. Rosini M, Simoni E, Bartolini M et al (2008) Inhibition of acetylcholinesterase, β-amyloid aggregation, and NMDA receptors in Alzheimer’s disease: a promising direction for the multi-target-directed ligands gold rush. J Med Chem 51:4381–4384. https://doi.org/10.1021/jm800577j

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Wang H, Chen H (2016) AChE inhibition-based multi-target-directed ligands, a novel pharmacological approach for the symptomatic and disease-modifying therapy of Alzheimer’s disease. Curr Neuropharmacol 14:364–375. https://doi.org/10.2174/1570159x14666160119094820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han J, Du Z, Lim MH (2021) Mechanistic insight into the design of chemical tools to control multiple pathogenic features in Alzheimer’s disease. Acc Chem Res 54:3930–3940. https://doi.org/10.1021/acs.accounts.1c00457

    Article  CAS  PubMed  Google Scholar 

  17. Kumar N, Gahlawat A, Kumar RN et al (2022) Drug repurposing for Alzheimer’s disease: in silico and in vitro investigation of FDA-approved drugs as acetylcholinesterase inhibitors. J Biomol Struct Dyn 40:2878–2892. https://doi.org/10.1080/07391102.2020.1844054

    Article  CAS  PubMed  Google Scholar 

  18. dos Santos TC, Gomes TM, Pinto BAS et al (2018) Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front Pharmacol 9:1192. https://doi.org/10.3389/fphar.2018.01192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abdul Manap AS, Wei Tan AC, Leong WH et al (2019) Synergistic effects of curcumin and piperine as potent acetylcholine and amyloidogenic inhibitors with significant neuroprotective activity in SH-SY5Y cells via computational molecular modeling and in vitro assay. Front Aging Neurosci 11 https://doi.org/10.3389/fnagi.2019.00206

  20. Shaik JB, Kandrakonda YR, Kallubai M et al (2021) Deciphering the AChE-binding mechanism with multifunctional tricyclic coumarin anti-Alzheimer’s agents using biophysical and bioinformatics approaches and evaluation of their modulating effect on Amyloidogenic peptide assembly. Int J Biol Macromol 193:1409–1420. https://doi.org/10.1016/j.ijbiomac.2021.10.204

    Article  CAS  PubMed  Google Scholar 

  21. YudiUtomo R, Asawa Y, Okada S et al (2021) Development of curcumin-based amyloid β aggregation inhibitors for Alzheimer’s disease using the SAR matrix approach. Bioorg Med Chem 46:116357. https://doi.org/10.1016/j.bmc.2021.116357

    Article  CAS  Google Scholar 

  22. Liao Y, Hu X, Pan J, Zhang G (2022) Inhibitory mechanism of baicalein on acetylcholinesterase: inhibitory interaction, conformational change, and computational simulation. Foods 11

  23. Viayna E, Sabate R, Muñoz-Torrero D (2013) Dual inhibitors of β-amyloid aggregation and acetylcholinesterase as multi-target anti-Alzheimer drug candidates. Curr Top Med Chem 13:1820–1842. https://doi.org/10.2174/15680266113139990139

    Article  CAS  PubMed  Google Scholar 

  24. Koide da Silva BY, da Neves Lopes A, S, José Sousa Maia P, et al (2021) Chemical and biological evaluation of the aqueous extract of Peumus boldus Molina (Monimiaceae) leaves. Pharmacognosy Res 14:45–52. https://doi.org/10.5530/pres.14.1.8

    Article  CAS  Google Scholar 

  25. Meira Menezes T, Assis C, Lacerda Cintra AJ et al (2021) Binding mechanism between acetylcholinesterase and drugs pazopanib and lapatinib: biochemical and biophysical studies. ACS Chem Neurosci 12:4500–4511. https://doi.org/10.1021/acschemneuro.1c00521

    Article  CAS  PubMed  Google Scholar 

  26. de Andrade RG, Souza de Oliveira A, Bartolini M et al (2021) Discovery of sustainable drugs for Alzheimer’s disease: cardanol-derived cholinesterase inhibitors with antioxidant and anti-amyloid properties. RSC Med Chem 12:1154–1163. https://doi.org/10.1039/D1MD00046B

    Article  Google Scholar 

  27. Sussman JL, Silman I (1992) Acetylcholinesterase: structure and use as a model for specific cation—protein interactions. Curr Opin Struct Biol 2:721–729. https://doi.org/10.1016/0959-440X(92)90207-N

    Article  CAS  Google Scholar 

  28. Radic Z, Pickering NA, Vellom DC et al (1993) Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry 32:12074–12084. https://doi.org/10.1021/bi00096a018

    Article  CAS  PubMed  Google Scholar 

  29. Saxena A, Redman AMG, Jiang X et al (1999) Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Chem Biol Interact 119–120:61–69. https://doi.org/10.1016/S0009-2797(99)00014-9

    Article  PubMed  Google Scholar 

  30. Freeman SE, Dawson RM (1991) Tacrine: a pharmacological review. Prog Neurobiol 36:257–277. https://doi.org/10.1016/0301-0082(91)90002-I

    Article  CAS  PubMed  Google Scholar 

  31. Sussman JL, Harel M, Silman I (1993) Three-dimensional structure of acetylcholinesterase and of its complexes with anticholinesterase drugs. Chem Biol Interact 87:187–197. https://doi.org/10.1016/0009-2797(93)90042-W

    Article  CAS  PubMed  Google Scholar 

  32. Harel M, Schalk I, Ehret-Sabatier L et al (1993) Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci 90(9031):LP-9035. https://doi.org/10.1073/pnas.90.19.9031

    Article  Google Scholar 

  33. Dawson RM (1990) Reversibility of the inhibition of acetylcholinesterase by tacrine. Neurosci Lett 118:85–87. https://doi.org/10.1016/0304-3940(90)90254-7

    Article  CAS  PubMed  Google Scholar 

  34. Summers WK, Tachiki KH, Kling A (1989) Tacrine in the treatment of Alzheimer’s disease. Eur Neurol 29((suppl 3):28–32. https://doi.org/10.1159/000116478

    Article  PubMed  Google Scholar 

  35. Adem A (1992) Putative mechanisms of action of tacrine in Alzheimer’s disease. Acta Neurol Scand 85:69–74. https://doi.org/10.1111/j.1600-0404.1992.tb04458.x

    Article  Google Scholar 

  36. Borges NM, Sartori GR, Ribeiro JFR et al (2018) Similarity search combined with docking and molecular dynamics for novel hAChE inhibitor scaffolds. J Mol Model 24:1–12. https://doi.org/10.1007/s00894-017-3548-9

    Article  CAS  Google Scholar 

  37. Kiametis AS, Gargano R, Martins JBL (2013) Anacardic acid as potential acetylcholinesterase inhibitor. Eur Biophys J with Biophys Lett 42:S160–S160

    Google Scholar 

  38. de Paula AAN, Martins JBL, dos Santos ML et al (2009) New potential AChE inhibitor candidates. Eur J Med Chem 44:3754–3759. https://doi.org/10.1016/j.ejmech.2009.03.045

    Article  CAS  PubMed  Google Scholar 

  39. Nascimento ÉCM, Oliva M, Świderek K et al (2017) Binding analysis of some classical acetylcholinesterase inhibitors: insights for a rational design using free energy perturbation method calculations with QM/MM MD simulations. J Chem Inf Model 57:958–976. https://doi.org/10.1021/acs.jcim.7b00037

    Article  CAS  PubMed  Google Scholar 

  40. Nascimento ECM, Martins JBLJBL, Moreno Nascimento EC et al (2011) Electronic structure and PCA analysis of covalent and non-covalent acetylcholinesterase inhibitors. J Mol Model 17:1371–1379. https://doi.org/10.1007/s00894-010-0838-x

    Article  CAS  PubMed  Google Scholar 

  41. Khan H, Marya Amin S et al (2018) Flavonoids as acetylcholinesterase inhibitors: current therapeutic standing and future prospects. Biomed Pharmacother 101:860–870. https://doi.org/10.1016/j.biopha.2018.03.007

    Article  CAS  PubMed  Google Scholar 

  42. Chufarova N, Czarnecka K, Skibiński R et al (2018) New tacrine–acridine hybrids as promising multifunctional drugs for potential treatment of Alzheimer’s disease. Arch Pharm (Weinheim) 351:1800050. https://doi.org/10.1002/ardp.201800050

    Article  CAS  Google Scholar 

  43. Nachon F, Carletti E, Ronco C et al (2013) Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. Biochem J 453:393–399. https://doi.org/10.1042/BJ20130013

    Article  CAS  PubMed  Google Scholar 

  44. Meena VK, Chaturvedi S, Sharma RK et al (2019) Potent acetylcholinesterase selective and reversible homodimeric agent based on tacrine for theranostics. Mol Pharm 16:2296–2308. https://doi.org/10.1021/ACS.MOLPHARMACEUT.8B01058

    Article  CAS  PubMed  Google Scholar 

  45. Zhou A, Hu J, Wang L et al (2015) Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer’s disease. J Mol Model 21:277. https://doi.org/10.1007/s00894-015-2797-8

    Article  CAS  PubMed  Google Scholar 

  46. Simeon S, Anuwongcharoen N, Shoombuatong W et al (2016) Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking. PeerJ 4:e2322. https://doi.org/10.7717/PEERJ.2322

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cunha WF, Gargano R, Garcia E et al (2014) Rovibrational energy and spectroscopic constant calculations of CH 4 ⋯ CH4, CH 4 ⋯ H2 O, CH 4 ⋯ CHF3, and H 2O ⋯ CHF3 dimers. J Mol Model 20:2298. https://doi.org/10.1007/s00894-014-2298-1

    Article  CAS  PubMed  Google Scholar 

  48. Pereira WA, Nascimento ÉCM, Martins JBL (2021) Electronic and structural study of T315I mutated form in DFG-out conformation of BCR-ABL inhibitors https://doi.org/10.1080/07391102.2021.1935320

  49. Graef EL, Martins JBL (2019) Analysis of lowest energy transitions at TD-DFT of pyrene in vacuum and solvent. J Mol Model 25:183. https://doi.org/10.1007/s00894-019-4065-9

    Article  CAS  PubMed  Google Scholar 

  50. Rocha KML, Nascimento ÉCM, Martins JBL (2021) Investigation on the interaction behavior of afatinib, dasatinib, and imatinib docked to the BCR-ABL protein. J Mol Model 27:309. https://doi.org/10.1007/s00894-021-04925-8

    Article  CAS  PubMed  Google Scholar 

  51. de Almeida AL, Barbosa LPG, Santos RL, Martins JBL (2016) Chemical reactivity indices of the caffeine molecule. Rev Virtual Química 8:483–492. https://doi.org/10.5935/1984-6835.20160035

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucksr GW, Schlegel HB et al (2009) Gaussian09 Revision D01. Gaussian Inc., Wallingford CT

  53. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537. https://doi.org/10.1021/ct100578z

    Article  CAS  PubMed  Google Scholar 

  54. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/JCC.21256

  55. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics J Mol Graph https://doi.org/10.1016/0263-7855(96)00018-5

  56. Dassault Systèmes BIOVIA (2017) Discovery Studio, 2017. Dassault Systèmes, San Diego, CA

  57. Johnson ER, Keinan S, Mori-Sánchez P et al (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Contreras-García J, Boto RA, Izquierdo-Ruiz F et al (2016) A benchmark for the non-covalent interaction (NCI) index or…is it really all in the geometry? Theor Chem Acc 135:242. https://doi.org/10.1007/s00214-016-1977-7

    Article  CAS  Google Scholar 

  59. Contreras-García J, Johnson ER, Keinan S et al (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632. https://doi.org/10.1021/ct100641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  61. Fuster F, Grabowski SJ (2011) Intramolecular hydrogen bonds: the QTAIM and ELF characteristics. J Phys Chem A 115:10078–10086. https://doi.org/10.1021/jp2056859

    Article  CAS  PubMed  Google Scholar 

  62. Henchman RH, Tai K, Shen T, McCammon JA (2002) Properties of water molecules in the active site gorge of acetylcholinesterase from computer simulation. Biophys J 82:2671–2682. https://doi.org/10.1016/S0006-3495(02)75609-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hamulakova S, Janovec L, Hrabinova M et al (2014) Synthesis and biological evaluation of novel tacrine derivatives and tacrine–coumarin hybrids as cholinesterase inhibitors. J Med Chem 57:7073–7084. https://doi.org/10.1021/jm5008648

    Article  CAS  PubMed  Google Scholar 

  64. Gerlits O, Ho KY, Cheng X et al (2019) A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chem Biol Interact 309:108698. https://doi.org/10.1016/j.cbi.2019.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cheung J, Rudolph MJ, Burshteyn F et al (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55:10282–10286. https://doi.org/10.1021/jm300871x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the computational resource of Laboratory of Computational Chemistry (LQC) of the University of Brasilia.

Funding

This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq 310071/2018–6, João B. L. Martins), Fundação de Apoio a Pesquisa do Distrito Federal (FAPDF 00193–00000229/2021–21, João B. L. Martins).

Author information

Authors and Affiliations

Authors

Contributions

Letícia A. Nascimento: investigation, calculations, writing—original draft. Érica C. M. Nascimento: conceptualization, methodology, formal analysis, methodology. João B. L. Martins: conceptualization, formal analysis, methodology, resources, supervision, writing—review and editing.

Corresponding author

Correspondence to João B. L. Martins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XXI—Brazilian Symposium of Theoretical Chemistry (SBQT2021).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2891 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, L.A., Nascimento, É.C.M. & Martins, J.B.L. In silico study of tacrine and acetylcholine binding profile with human acetylcholinesterase: docking and electronic structure. J Mol Model 28, 252 (2022). https://doi.org/10.1007/s00894-022-05252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05252-2

Keywords

Navigation