Skip to main content
Log in

The effect of salt concentration on DNA conformation transition: a molecular-dynamics study

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We performed three 3-ns molecular dynamics simulations of d(CGCGAATTCGCG)2 using the AMBER 8 package to determine the effect of salt concentration on DNA conformational transitions. All the simulations were started with A-DNA, with different salt concentrations, and converged with B-DNA with similar conformational parameters. However, the dynamic processes of the three MD simulations were very different. We found that the conformation transition was slow in the solution with higher salt concentration. To determine the cause of this retardation, we performed three additional 1.5-ns simulations starting with B-DNA and with the salt concentrations corresponding to the simulations mentioned above. However, astonishingly, there was no delayed conformation evolution found in any of the three simulations. Thus, our simulation conclusion is that higher salt concentrations slows the A → B conformation transition, but have no effect on the final stable structure.

A-DNA and B-DNA. (a) is the canonical A-DNA, and (b) is the canonical B-DNA. Looking from the central major groove

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kubinec MG, Wemmer DE (1992) J Am Chem Soc 114:8739–8740

    Article  CAS  Google Scholar 

  2. Rau DC, Parsegian A (1992) Biophys J 61:246–259

    PubMed  CAS  Google Scholar 

  3. Urabe H, Kato M, Tominaga Y (1990) J Chem Phys 92:768–774

    Article  CAS  Google Scholar 

  4. Forester TR, McDonald IR (1991) Mol Phys 72:643–660

    Article  CAS  Google Scholar 

  5. Feig M, Pettitt BM (1999) Biophys J 77:1769–1781

    Article  PubMed  CAS  Google Scholar 

  6. Nishimura Y, Torigoe C, Tsuboi M (1986) Nucleic Acids Res 14:2737–2748

    Article  PubMed  CAS  Google Scholar 

  7. Misra VK, Sharp KA, Friedman RA, Honig BJ (1994) J Mol Biol 238:245–263

    Article  PubMed  CAS  Google Scholar 

  8. Wang Y, Thomas GA, Peticolas WL (1989) J Biomol Struct Dyn 6:1177–1187

    PubMed  CAS  Google Scholar 

  9. Rinkel LJ, Sanderson MR, van der Marel GA, Altona C (1986) Eur J Biochem 159:85–93

    Article  PubMed  CAS  Google Scholar 

  10. Wolk S, Thurmes WN, Ross WS, Hardin CC, Tinoco I (1989) Biochemistry 28:2452–2459

    Article  PubMed  CAS  Google Scholar 

  11. Cheatham TE III, Kollman PA (1996) J Mol Biol 259:434–444

    Article  PubMed  CAS  Google Scholar 

  12. Mazur AK (2003) J Am Chem Soc 125:7849–7859

    Article  PubMed  CAS  Google Scholar 

  13. Tsui V, Case DA (2000) J Am Chem Soc 122:2489–2498

    Article  CAS  Google Scholar 

  14. Real AN, Greenall RJ (2000) J Mol Model 6:654–658

    Article  CAS  Google Scholar 

  15. Hud NV, Polak M (2001) Curr Opin Struc Biol 11:293–301

    Article  CAS  Google Scholar 

  16. McConnell KJ, Beveridge DL (2000) J Mol Biol 304:803–820

    Article  PubMed  CAS  Google Scholar 

  17. Young MA, Jayaram B, Beveridge DL (1997) J Am Chem Soc 119:59–69

    Article  CAS  Google Scholar 

  18. Lavery R, Sklenar HJ (1989) J Biomol Struct Dynam 6:63–91

    Google Scholar 

  19. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr KM, Ferguson DM, Spelleyer DC, Fox T, Caldwell JW, Kollman PA (1996) J Am Chem Soc 117:5179–5197

    Article  Google Scholar 

  20. Feig M, Pettitt BM (1997) J Phys Chem B 101:7361–7363

    Article  CAS  Google Scholar 

  21. Feig M, Pettitt BM (1998) Biophys J 75:134–149

    PubMed  CAS  Google Scholar 

  22. Cheatham TE III, Crowley MF, Fox T, Kollman PA (1997) Proc Natl Acad Sci USA 94:9626–9630

    Article  PubMed  CAS  Google Scholar 

  23. Cheatham TE III, Kollman PA (1997) Structure 5:1297–1311

    Article  PubMed  CAS  Google Scholar 

  24. Cheatham TE III, Young MA (2001) Biopolymers 56:232–256

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 90203013, and supported by the Education Ministry of China under Grant No. 20020422012. We thank David. A. Case and the AMBER group for making the AMBER 8 package available to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, C., Xia, Y., Zhao, M. et al. The effect of salt concentration on DNA conformation transition: a molecular-dynamics study. J Mol Model 12, 249–254 (2006). https://doi.org/10.1007/s00894-005-0023-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0023-9

Keywords

Navigation