Skip to main content
Log in

On the existence of MHn species with M=Al, Ga and n=4, 5, 6. Computational study of structures, stabilities and bonding

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Based on second-order perturbation theory (MP2) predictions with large 6-311++G(3df, 3pd) basis set we have reviewed the possible structures and stabilities of a series of neutral MHn(M=Al, Ga; n=4, 5, 6) species. For AlH4 and AlH5, our results confirm the previous theoretical findings, which indicate the dihydrogen Cs complexes (2A′) AlH2(H2) and (1A′) AlH3(H2), respectively, as the lowest energy isomers. We found, similarly, Cs (2A′) GaH2(H2) and (1A′) GaH3(H2) van der Waals complexes as the most stable species of the gallium analogues GaH4 and GaH5. The calculated H2 dissociation energies (De) for AlH2(H2) and AlH3(H2) are of the order 1.8–2.5 kcalmol1, whereas this range of values for GaH2(H2) and GaH3(H2) is 1.4–1.8 kcalmol1 . Symmetry-adapted perturbation theory (SAPT) was used to analyze the interaction energies of these dihydrogen complexes (for n=5) to determine why the Ga species show a smaller binding energy than the Al species. The SAPT partitioning of the interaction energy showed significant differences between AlH3(H2) and GaH3(H2), resulting from the much stronger “hydride” character of the aluminum species. The experimental observation of AlH2(H2) and AlH3(H2), and likely GaH3(H2), via low-temperature matrix isolation has been reported recently by Pullumbi et al. and Andrews et al., supporting the theoretical predictions. For n=6, we found the degenerate C2(2A) and Cs(2A′) MH2(H2)2 “double H2” type van der Waals complexes as the lowest energy species for both M=Al and Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Grochala W, Edwards PP (2004) Chem Rev 104:1283–1315

    Article  PubMed  CAS  Google Scholar 

  2. Graetz J, Reilly JJ, Johnson J, Yu IA, Tyson TA (2004) Appl Phys Lett 85:500–502

    Article  CAS  Google Scholar 

  3. Schüth F, Bogdanovic B, Felderhoff M (2004) Chem Commun 2249–2258

  4. Zhu YF, Shehadeh R, Grant ER (1992) J Chem Phys 97:883–893

    Article  CAS  Google Scholar 

  5. Köppe R, Kasai PH (1996) J Am Chem Soc 118:135–139

    Article  Google Scholar 

  6. Parnis JM, Ozin GA (1989) J Phys Chem 93:1215–1220

    Article  CAS  Google Scholar 

  7. Pullumbi P, Mijoule C, Manceron L, Bouteiller Y (1994) Chem Phys 185:13–24

    Article  CAS  Google Scholar 

  8. Chaban G, Gordon MS (1997) Chem Phys Lett 278:195–201

    Article  CAS  Google Scholar 

  9. Williams J, Alexander MH (2000) J Chem Phys 112:5722–5730

    Article  CAS  Google Scholar 

  10. Pullumbi P, Bouteiller Y, Manceron L, Mijoule C (1994) Chem Phys 185:25–37

    Article  CAS  Google Scholar 

  11. Wang X, Andrews L, Tam S, DeRose ME, Fajardo ME (2003) J Am Chem Soc 125:9218–9228

    Article  PubMed  CAS  Google Scholar 

  12. Wang X, Andrews L (2003) J Phys Chem A 107:11371–11379

    Article  CAS  Google Scholar 

  13. Urban RD, Birk H, Polomsky P, Jones H (1991) J Chem Phys 94:2523–2528

    Article  CAS  Google Scholar 

  14. Knight Jr LB, Banisakuas III JJ, Babb R, Davidson ER (1996) J Chem Phys 105:6607–6615

    Article  CAS  Google Scholar 

  15. Pullumbi P, Bouteiller Y, Manceron L (1994) J Chem Phys 101:3610–3617

    Article  CAS  Google Scholar 

  16. Wong SS, Li W-K, Paddon-Row MN (1991) J Mol Struct (Theochem) 226:285–301

    Article  Google Scholar 

  17. Wiberg E, Amberger E (1971) Hydrides of the Elements of Main Groups I–IV. Elsevier, Amsterdam

    Google Scholar 

  18. Cheung YS, Ma NL, Li WL (1993) J Mol Struct (Theochem) 283:169–175

    Article  Google Scholar 

  19. Schreiner PR, Schaefer III HF, Schleyer P (1995) J Chem Phys 103:5565–5569

    Article  CAS  Google Scholar 

  20. Mitzel NW (2003) Angew Chem Int Ed 42:3856–3858

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  24. Huzinaga S, Andzelm J, Klobukowski M, Radzio-Andzelm E, Sakai Y, Tatewaki H (1984) Gaussian basis sets for molecular calculations. Elsevier, New York

    Google Scholar 

  25. Pople JA, Binkley JS, Seeger R (1976) Intern J Quant Chem Symp 10:1–19

    Article  CAS  Google Scholar 

  26. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  PubMed  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396–1396

    Article  CAS  Google Scholar 

  29. Zimmerli U, Parrinello M, Koumoutsakos P (2004) J Chem Phys 120:2693–2700

    Article  PubMed  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.01. Gaussian Inc, Pittsburgh

    Google Scholar 

  31. Schaftenaar G, Noordik JH (2000) J Comput Aided Mol Des 14:123–134

    Article  PubMed  CAS  Google Scholar 

  32. Bober K, Mierzwicki K, Moc J (2004) In: Proceedings of Winter School in Theoretical Chemistry 2004. A Frontier of Chemistry: New Species. Helsinki, Finland, December 13–16, p 25

  33. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  34. Williams HL, Szalewicz K, Jeziorski B, Moszynski R, Rybak S (1993) J Chem Phys 98:1279–1292

    Article  CAS  Google Scholar 

  35. Bukowski R, Cencek W, Jankowski P, Jeziorski B, Jeziorska M, Kucharski SA, Misquitta AJ, Moszynski R, Patkowski K, Rybak S, Szalewicz K, Williams HL, Wormer PES (2002) In: SAPT2002: An ab initio program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies. Sequential and Parallel Versions. see: http://www.physics.udel.edu/∼szalewic/SAPT/SAPT.html

Download references

Acknowledgements

The authors acknowledge a generous support of computing time at the Wroclaw Center for Networking and Supercomputing. J.M. thanks Prof. P.P. Edwards for Reference [1], and Dr. Jason Graetz for Reference [2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Panek.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moc, J., Bober, K. & Panek, J. On the existence of MHn species with M=Al, Ga and n=4, 5, 6. Computational study of structures, stabilities and bonding. J Mol Model 12, 93–100 (2005). https://doi.org/10.1007/s00894-005-0010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0010-1

Keywords

Navigation