Skip to main content
Log in

Lysozyme dimerization: brownian dynamics simulation

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The lysozyme dimerization reaction has been studied within the framework of encounter-complex (EC) formation theory using the MacroDox software package. Two types of energetically favorite ECs were determined. In the first of them, active-center amino acids of lysozyme take part in the complex formation or the second molecule blocks accessibility to active center sterically. Epitope amino-acid residues are involved in the complex of type II. The existence of both types of complexes does not contradict experimental data. Dimer-formation rate constants for different kinds of EC were calculated. Increasing the pH from 2.0 to 10.0 decreases the total positive lysozyme charge and eliminates the unfavorable repulsive electrostatic interaction. The rate constant of EC formation is inversely proportional to the protein total charge. The association rate constant was also enhanced by an increase of ionic strength that screened repulsive electrostatic interaction between positively charged proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gabdoulline RR, Wade RC (2001) J Mol Biol 306:1139–1155

    Article  PubMed  CAS  Google Scholar 

  2. Gabdoulline RR, Wade RC (2002) Curr Opin Struct Biol 12:204–213

    Article  PubMed  CAS  Google Scholar 

  3. Elcock AH, McCammon JA (2001) Biophys J 80:613–625

    PubMed  CAS  Google Scholar 

  4. Pearson DC, Gross EL (1998) Biophys J 75:2698–2711

    PubMed  CAS  Google Scholar 

  5. Gabdoulline RR, Wade RC (1999) J Mol Recognit 12:226–234

    Article  PubMed  CAS  Google Scholar 

  6. Sinha N, Smith-Gill SJ (2002) Curr Protein Pept Sci 3:601–614

    Article  PubMed  CAS  Google Scholar 

  7. Elcock AH, Sept D, McCammon JA (2001) J Phys Chem B 105:1504–1518

    Article  CAS  Google Scholar 

  8. Camacho CJ, Weng Z, Vajda S, DeLisi C (1999) Biophys J 76:1166–1178

    PubMed  CAS  Google Scholar 

  9. Sophianopoulos AJ, van Holde KE (1964) J Biol Chem 239:2516–2524

    PubMed  CAS  Google Scholar 

  10. Kuehner DE, Heyer C, Ramsh C, Fornefeld UM, Blanch HW, Prausnitz JM (1997) Biophys J 73:3211–3224

    PubMed  CAS  Google Scholar 

  11. Mischol M, Rosenberger FJ (1995) J Chem Phys 103:10424–10432

    Article  Google Scholar 

  12. Yonezawa Y, Tanaka Sh, Kubota T, Wakabayashi K, Yutani K, Fujiwara S (2002) J Mol Biol 323:237–251

    Article  PubMed  CAS  Google Scholar 

  13. Nesmelova IV, Fedotov VD (1998) Biochim Biophys Acta 1383:311–316

    PubMed  CAS  Google Scholar 

  14. Price WS, Tsuchiya F, Agata Y (2001) Biophys J 80:1585–1590

    PubMed  CAS  Google Scholar 

  15. Gottshalk M, Halle B (2003) J Phys Chem B 107:7914–7922

    Article  CAS  Google Scholar 

  16. Carlsson F, Malmsten M, Linse P (2001) J Phys Chem B 105:12189–12195

    Article  CAS  Google Scholar 

  17. Stocker U, Spiegel K, van Gunsteren WF (2000) J Biomol NMR 18:1–12

    Article  PubMed  CAS  Google Scholar 

  18. Ravichandran S, Madura JD, Talbot J (2001) J Phys Chem B 105:3610–3613

    Article  CAS  Google Scholar 

  19. Altobelli G, Subramaniam Sh (2000) Biophys J 79:2954–2965

    PubMed  CAS  Google Scholar 

  20. Ouporov IV, Knull HR, Thomasson KA (1999) Biophys J 76:17–27

    PubMed  CAS  Google Scholar 

  21. Gabdoulline RR, Wade RC (1997) Biophys J 72:1917–1929

    PubMed  CAS  Google Scholar 

  22. Northrup SH, Laughen T, Stevenson G (1997) MacroDox macromolecular simulation program. Tennessee Technological University, Cookeville, TN

  23. Northrup SH, Boles J, Reynolds J (1988) Science 241:67–70

    Article  PubMed  CAS  Google Scholar 

  24. Northrup SH, Boles JO, Reynolds JCL (1987) J Phys Chem 91:5991–5998

    Article  CAS  Google Scholar 

  25. Gross EL (2004) Biophys J 87:2043–2059

    Article  PubMed  CAS  Google Scholar 

  26. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rogers JR, Kennard O, Shimanouchi T, Tatsumi M (1977) J Mol Biol 112:535–542

    Article  PubMed  CAS  Google Scholar 

  27. Tanford C, Kirkwood JG (1957) J Am Chem Soc 79:5333–5539

    Article  CAS  Google Scholar 

  28. Matthew JB, Gurd FRN (1986) Methods Enzymol 130:413–436

    PubMed  CAS  Google Scholar 

  29. Warwicker J, Watson HC (1982) J Mol Biol 157:671–679

    Article  PubMed  CAS  Google Scholar 

  30. Ermak DL, McCammon JA (1978) J Chem Phys 69:1353–1360

    Article  Google Scholar 

  31. Northrup SH, Allison SA, McCommon AA (1983) J Chem Phys 80:1517–1524

    Article  Google Scholar 

  32. Zhou H-X (1990) J Phys Chem 92:3092–3095

    Article  CAS  Google Scholar 

  33. Smoluchowski MV (1916) Phys Z 17:557–571

    Google Scholar 

  34. Koradi R, Billeter M, Wuthrich K (1996) J Mol Graphics 14:51–55

    Article  CAS  Google Scholar 

  35. Fujiwara S, Matsumoto F, Yonezawa Y (2003) J Mol Biol 331:21–28

    Article  PubMed  CAS  Google Scholar 

  36. Wilson LJ, Adcock-Downey L, Pusey ML (1996) Biophys J 71:2123–2129

    PubMed  CAS  Google Scholar 

  37. Sorrentino S, Yakovlev GI, Libonati M (1982) Eur J Biochem 124:183–189

    Article  PubMed  CAS  Google Scholar 

  38. Norton RS, Allerhand A (1977) J Biol Chem 252:1795–1798

    PubMed  CAS  Google Scholar 

  39. Hashimoto S, Seki H, Masuda T, Imamura M, Kondo M (1981) Int J Radiat Biol Relat Stud Phys Chem Med 40:31–46

    Article  PubMed  CAS  Google Scholar 

  40. Hampe OG, Tondo CV, Hasson-Voloch A (1982) Biophys J 40:77–82

    Article  PubMed  CAS  Google Scholar 

  41. Frare E, Polverino de Laureto P, Zurdo J, Dobson CM, Fontana A (2004) J Mol Biol 340:1153–1165

    Article  PubMed  CAS  Google Scholar 

  42. Nielsen JE, McCammon JA (2003) Protein Sci 12:313–326

    Article  PubMed  CAS  Google Scholar 

  43. Shaw KL, Grimsley GR, Yakovlev GI, Makarov AA, Pace CN (2001) Protein Sci 10:1206–1215

    Article  PubMed  CAS  Google Scholar 

  44. Patrickios CS, Yamasaki EN (1995) Anal Biochem 231:82–91

    Article  PubMed  CAS  Google Scholar 

  45. Georgescu RE, Alexov EG, Gunner MR (2002) Biophys J 83:1731–1748

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author is very grateful to Dr. S. Northrup for providing her with the MacroDox package programs and Dr. I. Nesmelova (Minnesota University) for critical reading of this manuscript. This work was supported by the Russian Foundation for Basic Research grant 03-04-96276p2003tatarstan and NIOKR AN RT grant 03.3-10.227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Ermakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermakova, E. Lysozyme dimerization: brownian dynamics simulation. J Mol Model 12, 34–41 (2005). https://doi.org/10.1007/s00894-005-0001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0001-2

Keywords

Navigation