Skip to main content
Log in

Markovian chemicals “in silico” design (MARCH-INSIDE), a promising approach for computer-aided molecular design III: 2.5D indices for the discovery of antibacterials

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present work continues our series on the use of MARCH-INSIDE molecular descriptors (parts I and II: J Mol Mod 8:237–245, [2002] and 9:395–407, [2003]). These descriptors encode information pertaining to the distribution of electrons in the molecule based on a simple stochastic approach to the idea of electronegativity equalization (Sanderson’s principle). Here, 3D-MARCH-INSIDE molecular descriptors for 667 organic compounds are used as input for a linear discriminant analysis. This 2.5D-QSAR model discriminates between antibacterial compounds and non-antibacterial ones with 92.9% accuracy in training sets. On the other hand, the model classifies 94.0% of the compounds in test set correctly. Additionally, the present QSAR performs similar-to-better than other methods reported elsewhere. Finally, the discovery of a novel compound illustrates the use of the method. This compound, 2-bromo-3-(furan-2-yl)-3-oxo-propionamide has MIC50 of 6.25 and 12.50 μg/mL against Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 27853, respectively while ampicillim, amoxicillim, clindamycin, and metronidazole have, for instance, MIC50 values higher than 250 μg/mL against E. coli. Consequently, the present method may becomes a useful tool for the in silico discovery of antibacterials.

Figure Colour scaled backprojection analysis of some compounds in training and predicting sets: Nitrofurantoin (left top), Cefuroxime (right top), Nifuroxime (left bottom) and 2-bromo-3-(fur-2-yl)-3-oxo-propionamide (right bottom). Colour code is as follows: Blue: structural framework with high (more than 50 %) contribution to the property, Light blue: group with significant contribution (20-50 %), Grey: group with low (< 10 %) or not contribution to the property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Randič M, Sabljič A, Nikolič S, Trinajstič N (1988) Int J Quantum Chem Quantum Biol Symp 15:267–285

    Google Scholar 

  2. Kier LB, Hall LH (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, pp 455–489

    Google Scholar 

  3. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Mannhold R, Kubinyi H, Timmermann H (eds) Wiley-VCH, Weinheim

  4. Karelson M, Lobanov VS, Katritzky AR (1996) Chem Rev 96:1027–1043

    Google Scholar 

  5. Bultinck P, Langenaeker W, Carbó-Dorca R, Tollenaere JP (2003) J Chem Inf Comput Sci 43:422–428

    Google Scholar 

  6. Sanderson RT (1951) Science 114:670–672

    Google Scholar 

  7. Sanderson RT (1983) Polar covalence. Academic, New York

    Google Scholar 

  8. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219–3228

    Google Scholar 

  9. Mortier WJ, Gosh SK, Shankar S (1986) J Am Chem Soc 108:4315–4320

    Google Scholar 

  10. González-Díaz H, Olazábal E, Castañedo N, Hernádez SI, Morales A, Serrano HS, González J, Ramos de Armas R (2002) J Mol Mod 8:237–245

    Google Scholar 

  11. González-Díaz H, Gia O, Uriarte E, Hernádez SI, Ramos de Armas R, Chaviano M, Seijo S, Castillo JA, Morales L, Santana L, Akpaloo D, Molina E, Cruz M, Torres LA, Cabrera MA (2003) J Mol Mod 9:395–407

    Google Scholar 

  12. González-Díaz H, Bastida I, Castañedo N, Nasco O, Olazábal E, Morales A, Serrano SS, Ramos de Armas R (2004) Bull Math Biol 66:1285–1311. DOI 10.1016/j.bulm.2003.12.003

    Google Scholar 

  13. González-Díaz H, Marrero Y, Hernández SI, Bastida I, Tenorio I, Nasco O, Uriarte E, Castañedo N, Cabrera M, Aguila E, Marrero O, Morales A, Pérez M (2003) Chem Res Toxicol 16:1318–1327

    Google Scholar 

  14. González-Díaz H, Ramos de Armas R, Uriarte E (2002) Online J Bioinf 1:83–95

    Google Scholar 

  15. González-Díaz H, Ramos de Armas R, Molina RR (2003) Bull Math Biol 65:991–1002

    Google Scholar 

  16. González-Díaz H, Ramos de Armas R, Molina RR (2003) Bioinformatics 19:2079–2087

    Google Scholar 

  17. González-Díaz H, Molina RR, Uriarte E (2004) Polymer 45:3845–3853

    Google Scholar 

  18. Ramos de Armas R, González-Díaz H, Molina RR, Uriarte E (2004) Proteins: Struct Funct Bioinf 56:715–723. DOI 10.1002/prot.20159

    Google Scholar 

  19. González-Díaz H, Hernández SI, Uriarte E, Santana L (2003) Comput Biol Chem 27:217–227

    Google Scholar 

  20. Eliel E, Wilen S, Mander L (1994) Stereo chemistry of organic compounds. Wiley, New York, pp 103–112

    Google Scholar 

  21. Hardman GJ, Lee EI (1996) Goodman and Gilman’s, the pharmacological basis of therapeutics, 9th edn, McGraw-Hill, New York

    Google Scholar 

  22. Pauling L (1939) The nature of chemical bond. Cornell University Press, Ithaca, pp 2–60

    Google Scholar 

  23. Freund JA, Poschel T (2000) Stochastic processes in physics, chemistry, and biology. In: Lect Notes Phys. Springer, Berlin Heidelberg New York

  24. González-Díaz H, Molina RR, Hernández SI (2003) MARCH-INSIDE 2.0 (Markovian Chemicals “In Silico” Design) Chemical Bioactives Center, Central University of “Las Villas”, Cuba. The present constitutes a preliminary experimental version; future professional versions shall be available to the public free of charge. For any information about it, sends and e-mail to the corresponding author: humbertogd@vodafone.es or humbertogd@cbq.uclv.edu.cu.

  25. Kowalski RB, Wold S (1982) Pattern recognition in chemistry. In: Krishnaiah PR, Kanal LN (eds) Handbook of statistics. North Holland, Amsterdam, pp 673–697

    Google Scholar 

  26. STATISTICA (2002) Statsoft Inc, version. 6.0

  27. van Waterbeemd H (1995) Discriminant analysis for activity prediction. In: Method and principles in medicinal chemistry. Chemometric methods in molecular design. VCH, Weinheim, pp 265–282

  28. Swets JA (1988) Science 240:1285–1293

    CAS  PubMed  Google Scholar 

  29. Kleeman A, Engel J, Kutscher B, Reichert D (2001) Pharmaceutical Substances 4th. George Thieme Verlag, Stuttgart

    Google Scholar 

  30. Negwer M (1987) Organic chemical drugs and their synonyms. Akademie, Berlin

    Google Scholar 

  31. The ATCC Bacteriology Collection (2002): http://www.atcc.org/SearchCatalogs/Bacteria.cfm

  32. National Committee for Clinical Laboratory Standards (2000) Methods for dilution antimicrobial susceptibility tests for bacteria that gorw aerobically. Approved standard M7-A5. Wyne, Pa

  33. González MP, González-Díaz H, Molina RR, Cabrera MA, Ramos de Armas R (2003) J Chem Inf Comput Sci 43:1192–1199

    Google Scholar 

  34. Gálvez J, García R, Salabert MT, Soler R (1994) J Chem Inf Comput Sci 34:520–525

    Google Scholar 

  35. Cronin MTD, Aynur AO, Dearden CJ, Deffy CJ, Netzeva IT, Patel H, Rowe HP, Schultz TW, Worth PA, Voutzolidis K, Schüürmann G (2002) J Chem Inf Comput Sci 42:869–878

    Google Scholar 

  36. Tomás-Vert F, Pérez-Giménez F, Salabert-Salvador MT, García-March FJ, Jaén-Oltra J (2000) J Mol Struct Theochem 504:249–259

    Google Scholar 

  37. Molina E, González-Díaz H, González MP, Rodríguez E, Uriarte E (2004) J Chem Inf Comput Sci 44:515–521

    Google Scholar 

  38. García-Domenech R, Julián-Ortiz JV (1998) J Chem Inf Comput Sci 38:445–449

    Google Scholar 

  39. Mut-Ronda S, Salabert-Salvador MT, Duart MJ, Antón-Fos GM (2003) Bioorg Med Chem Lett 13:2699–2702

    Google Scholar 

  40. Murcia-Soler M, Pérez-Giménez F, García-March FJ, Salabert-Salvador MT, Díaz-Villanueva W, Medina-Casamayor PJ (2003) Mol Graph Mod 21:375–390

    Google Scholar 

  41. Murcia-Soler M, Pérez-Giménez F, García-March FJ, Salabert-Salvador MT, Díaz-Villanueva W, Castro-Bleda MJ, Villanueva-Pareja AJ (2004) Chem Inf Comput Sci 44:1031–1041

    Google Scholar 

  42. Mishra RK, Garcia-Domenech R, Galvez J (2001) J Chem Inf Comput Sci 41:383–393

    Google Scholar 

  43. Golbraikh A, Bonchev D, Tropsha A (2001) J Chem Inf Comput Sci 41:147–158

    Google Scholar 

  44. Julián-Ortiz JV, de Gregorio Alapont C, Ríos-Santamaria I, García-Domenech R, Gálvez J (1988) J Mol Graphics Modell 16:14–18

    Google Scholar 

  45. Kellogg GE, Kier LB, Gaillard P, Hall LH (1996) J Comput-Aided Mol Des 10:513–520

    Google Scholar 

  46. Golbraik A, Bonchev D, Tropsha A (2001) J Chem Inf Comput Sci 41:147–158

    Google Scholar 

  47. Fujimura T, Yamano Y, Yoshida I, Shimada J, Kuwahara S (2003) Antimicrob Agents Chemoter 47:923–931

    Google Scholar 

  48. Handal T, Caugant DA, Olsen I (2003) Antimicrob Agents Chemoter 47:1443–1446

    Google Scholar 

  49. Stilf N, Baumann K (2003) J Med Chem 46:1390–1407

    Google Scholar 

  50. Devillers J, Balaban AT (2000) Topological indices and related descriptors in QSAR and drug design. Amsterdam, pp 3–41

Download references

Acknowledgements

We thank the Spanish Ministry of Science and Technology (SAF2003-02222), for partial financial support. Molina RR, Castañedo C, and Almeida SM, acknowledge support from the Universität Rostock, Germany. Both unknown referees are acknowledged by their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto González-Díaz.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Díaz, H., Torres-Gómez, L.A., Guevara, Y. et al. Markovian chemicals “in silico” design (MARCH-INSIDE), a promising approach for computer-aided molecular design III: 2.5D indices for the discovery of antibacterials. J Mol Model 11, 116–123 (2005). https://doi.org/10.1007/s00894-004-0228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0228-3

Keywords

Navigation