Skip to main content
Log in

A DFT investigation of conformational geometries and interconversion equilibria of phenylthiosemicarbazone and its complexation with zinc

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The geometrical structures of phenylthiosemicarbazone (HAPhTSC) conformers have been obtained by geometry optimizations using density functional theory (DFT) calculations at the B3LYP/6-31G(d) and B3LYP/6-311G(d,p) levels of theory. Six thioamino and 24 thioimino tautomers of HAPhTSC have been found. Six tautomerization reactions between thioamino and thioimino tautomers occurring via transition states and their corresponding activation energies have been obtained. Conformational pathways for tautomerizations and interconversions of HAPhTSC conformers have been presented. Tautomerization between the most stable species of thioamino (Atttcc) and its thioimino (Itttcct) tautomer is an endothermic reaction, ΔH0=18.17 kcal mol−1 and its log K=−13.74, at 298.15 K. Thermodynamic quantities of tautomerizations, interconversions of HAPhTSC conformers and their equilibrium constants are reported. The geometry of the zinc complex with HAPhTSC, found as a Zn(HAPhTSC)2Cl2 structure, has been obtained using B3LYP/6-31G(d) calculations. Binding of the Zn(HAPhTSC)2Cl2 complex is an exothermic and spontaneous reaction.

Figure Conformational notation defined as a name consisting of a letter “A” for a thioamino tautomer followed by “c” for cis or “t” for trans isomerism of five dihedral angles of χ(C4-C3-C2-N3), ϕ(C3-C2-N3-N2), ψ(C2-N3-N2-C1), θ(N3-N2-C1-N1) and ω(N2-C1-N1-H2), serially, or a letter “I” for b thioimino tautomer followed by “c” for cis or “t” for trans isomerism of six dihedral angles of χ(C4-C3-C2-N3), ϕ(C3-C2-N3-N2), ψ(C2-N3-N2-C1), θ(N3-N2-C1-N1), ω(N2-C1-N1-H2) and δ (N2-C1-S-H1), serially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kolb VM, Stupar JW, Janota TE, Duax WL (1989) J Org Chem 54:2341–2346

    CAS  Google Scholar 

  2. Tian YP, Duan CY, Lu ZL, You XZ (1996) Polyhedron 15:2263–2271

    Article  CAS  Google Scholar 

  3. Bresolin L, Burrow RA, Hörner M, Bermejo E, Castiñeiras A (1997) Polyhedron 16:3947–3951

    Article  CAS  Google Scholar 

  4. Basuli F, Ruf M, Pierpont CG, Bhattacharya S (1998) Inorg Chem 37:6113–6116

    Article  CAS  PubMed  Google Scholar 

  5. Basuli F, Peng SM, Bhattacharya S (2000) Inorg Chem 39:1120–1127

    Article  CAS  PubMed  Google Scholar 

  6. Basuli F, Peng SM, Bhattacharya S (2001) Inorg Chem 40:1126–1133

    Article  CAS  PubMed  Google Scholar 

  7. Gupta P, Basuli F, Peng SM, Lee GH, Bhattacharya S (2003) Inorg Chem 42:2069–2074

    Article  CAS  PubMed  Google Scholar 

  8. Pal I, Dutta S, Basuli F, Goverdhan S, Peng SM, Lee GH, Bhattacharya S (2003) Inorg Chem 42:4338–4345

    Article  CAS  PubMed  Google Scholar 

  9. de Sousa GF, Deflon VM, Niquet E (2004) J Mol Struct 687:17–21

    Article  Google Scholar 

  10. Kasuga NC, Sekino K, Koumo C, Shimada N, Ishikawa M, Nomiya K (2001) J Inorg Biochem 84:55–65

    Article  CAS  PubMed  Google Scholar 

  11. Babu RR, Vijayan N, Gopalakrishnan R, Rramasamy P (2002) J Crystal Growth 240:545–548

    Article  Google Scholar 

  12. Ruangpornvisuti V, Pulpoka B, Tuntulani T, Thipyapong K, Suksai C (2002) Bull Korean Chem Soc 23:555–562

    CAS  Google Scholar 

  13. Thipyapong K, Arano Y, Ruangpornvisuti V (2004) J Mol Struct (Theochem) 676:65–71

    Article  CAS  Google Scholar 

  14. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  PubMed  Google Scholar 

  15. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  16. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    CAS  Google Scholar 

  17. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  18. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  19. Wachters AJH (1970) J Chem Phys 52:1033–1036

    Article  CAS  Google Scholar 

  20. Hay PJ (1977) J Chem Phys 66:4377–4384

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian Inc., Pittsburgh

    Google Scholar 

  22. Flükiger P, Lüthi HP, Portmann S, Weber J (2000) MOLEKEL 43. Swiss Center for Scientific Computing, Manno

    Google Scholar 

  23. Ochterski JW (2000) Thermochemistry in Gaussian. Gaussian Inc., Pittsburgh

    Google Scholar 

  24. Souza P, Sanz L, Fernandez V, Arquero A, Gutierrez E, Monge A (1991) Z Naturforsch Teil b 46:767–772

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the partial support by the Thailand research Fund (TRF) and Rachadapisek Sompoch Endowment Fund, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vithaya Ruangpornvisuti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruangpornvisuti, V., Wanno, B. A DFT investigation of conformational geometries and interconversion equilibria of phenylthiosemicarbazone and its complexation with zinc. J Mol Model 10, 418–426 (2004). https://doi.org/10.1007/s00894-004-0217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0217-6

Keywords

Navigation