Skip to main content
Log in

Local sequential minimization of double stranded B-DNA using Monte Carlo annealing

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A software algorithm has been developed to investigate the folding process in B-DNA structures in vacuum under a simple and accurate force field. This algorithm models linear double stranded B-DNA sequences based on a local, sequential minimization procedure. The original B-DNA structures were modeled using initial nucleotide structures taken from the Brookhaven database. The models contain information at the atomic level allowing one to investigate as accurately as possible the structure and characteristics of the resulting DNA structures. A variety of DNA sequences and sizes were investigated containing coding and non-coding, random and real, homogeneous or heterogeneous sequences in the range of 2 to 40 base pairs. The force field contains terms such as angle bend, Lennard-Jones, electrostatic interactions and hydrogen bonding which are set up using the Dreiding II force field and defined to account for the helical parameters such as twist, tilt and rise. A close comparison was made between this local minimization algorithm and a global one (previously published) in order to find out advantages and disadvantages of the different methods. From the comparison, this algorithm gives better and faster results than the previous method, allowing one to minimize larger DNA segments. DNA segments with a length of 40 bases need approximately 4 h, while 2.5 weeks are needed with the previous method. After each minimization the angles between phosphate–oxygen-carbon A 1, the oxygen–phosphate–oxygen A 2 and the average helical twists were calculated. From the generated fragments it was found that the bond angles are A 1=150°±2°and A 2=130°±10°, while the helical twist is 36.6°±2° in the A strand and A 1=150°±6° and A 2=130±6° with helical twist 39.6°±2° in the B strand for the DNA segment with the same sequence as the Dickerson dodecamer.

Figure The final minimized DNA segment of the Dickerson dodecamer sequence represented by ball drawings and viewed (left) perpendicular and (right) down the helical axis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tidor B, Irikura KK, Brooks BR, Karplus M (1983) J Biomol Struct Dyn 1:231–252

    CAS  PubMed  Google Scholar 

  2. Levitt M (1983) Cold Spring Harbor Symp Quant Biol 45:251–262

    Google Scholar 

  3. Rappe AK, Cassewit CJ (1997) Molecular mechanics across chemistry. University Science Books

  4. Swamminathan S, Ravishaanker G, Beveridge DL (1991) J Am Chem Soc 113:5027-5040

    Google Scholar 

  5. Drukker K, Schatz GC (2000) J Phys Chem B 26:6108–6111

    Article  Google Scholar 

  6. Bruant N, Flatters D, Lavery R, Genest D (1999) Biophys J 5:2366–2376

    Google Scholar 

  7. Jian H, Vologodski AV (1997) J Comput Phys 136:168–179

    Article  CAS  Google Scholar 

  8. (a) Lavery R, Lebroun A (1999) Genetica 106:1–2; (b) Lavery R, Lebroun A (1999) Genetica 106:75–84

    Article  PubMed  Google Scholar 

  9. Olson WK, Zhurkin VB (2000) Curr Opin Struct Biol 3:286–297

    Article  Google Scholar 

  10. Vlahovicek K, Pongor S (2000) Bioinformatics 11:1044–1045

    Google Scholar 

  11. Treger M, Westhof E (1987) J Mol Graphics 5:178–183

    Article  CAS  Google Scholar 

  12. Srinivasan AR, Olson WK (1987) J Biomol Struct Dyn 4:895–938

    CAS  PubMed  Google Scholar 

  13. Schlick T (1995) Curr Opin Struct Biol 5:245–262

    Article  CAS  Google Scholar 

  14. MacKerrell Jr AD, Banavali N, Foloppe N (2000) Biopolymers 56:257–265

    Article  PubMed  Google Scholar 

  15. Schneider B, Neidle S, Berman HM (1997) Biopolymers 42:113-124

    Article  CAS  Google Scholar 

  16. Sherer EC, Harris SA, Soliva R, Orozco M, Laughton CA (1999) J Am Chem Soc 121:5981–5991

    Article  CAS  Google Scholar 

  17. Gabb HA, Prevost C, Bertucat G, Robert CH, Lavery R (1997) J Comput Chem 16:2001-2011

    Google Scholar 

  18. Duan Y, Wilkosz P, Crowley M, Rosenberg JM (1997) J Mol Biol 4:553–572

    Article  Google Scholar 

  19. Ayadi L, Coulombeau C, Lavery R (1999) Biophys J 6:3218–3226

    Google Scholar 

  20. Lafontaine L, Lavery R (2000) Biophys J 2:680–685

    Google Scholar 

  21. Westcott TP, Tobias I, Olson WK (1997) J Chem Phys 10:3967–3980

    Article  Google Scholar 

  22. Ramachandran G, Scchlick T (1995) Phys Rev E 6:6188–6203

    Article  Google Scholar 

  23. Schlick T, Olson WK (1992) J Mol Biol 223:1089–1119

    CAS  Google Scholar 

  24. Schlick T, Olson WK (1992) Science 257:1110–1115

    CAS  PubMed  Google Scholar 

  25. Ezaz-Nikpay K, Verdine GL (1992) J Am Chem Soc 114:6562–6563

    CAS  Google Scholar 

  26. Tereshko V, Minasov G, Egli M (1999) J Am Chem Soc 121:470–471

    Article  CAS  Google Scholar 

  27. Tereshko V, Minasov G, Egli M (1999) J Am Chem Soc 121:6970–6970

    Article  Google Scholar 

  28. Sfyrakis K, Provata A, Povey DC, Howlin BJ (2003) Molecular Simulations 29:555–575

    Article  CAS  Google Scholar 

  29. Creighton TE (1993) Structures and Molecular Properties, 2nd edn. Proteins, New York

  30. Goodfellow JM, Moss DS (1992) Computer modeling of bimolecular processes. Ellis Horwood

  31. Voet D, Voet JG (1995) Biochemistry, 2nd edn. Wiley, New York

  32. Olson WK, Srinivasan AR, Hao HH, Nauss JL (1988) In: Olson WK, Sarma MH, Sarma RH, Sundaralingman M (eds) Structure and expression 3, DNA bending and curvature. Adenine Press, New York, pp 225–242

  33. Schurr JM (1985) Biopolymers 24:1233–1246

    CAS  PubMed  Google Scholar 

  34. Selepova P, Kypr J (1985) Biopolymers 24:867–882

    CAS  PubMed  Google Scholar 

  35. Shimada J, Yamakawa H (1985) J Mol Biol 184:319–329

    CAS  PubMed  Google Scholar 

  36. Tsuru H, Wadati M (1986) Biopolymers 25:2083–2096

    CAS  PubMed  Google Scholar 

  37. Tan RK, Harvey SC (1989) J Mol Biol 205:573-591

    CAS  PubMed  Google Scholar 

  38. Provata A, Tsakiroglou M, Almirantis Y (2000) Non Randomness and Non Linearities in DNA. Proceedings to 1st Interdisciplinary Symposium on Non-linear Problems, Athens

  39. Almirantis Y, Provata A (1999) J Stat Phys 97:233–262

    Article  Google Scholar 

  40. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran. The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

  41. Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897–8909

    CAS  Google Scholar 

  42. Sayle R (1994) Rasmol home pagehttp://www.rasmol.com

  43. Albert B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell, 3rd edn. Garland Publishing

  44. Zimmerman SB (1982) Annu Rev Biochem 51:395–427

    Article  CAS  PubMed  Google Scholar 

  45. Nunn CM, Jenkins TC, Neidle SE (1994) Eur J Biochem 226:953–961

    CAS  PubMed  Google Scholar 

  46. Denisov AY, Zamaratski EV, Maltseva TV, Sandstrom A, Bekiroglou S, Altmann K–H, Egli M, Chattopadhyaya J (1998) J Biomol Struct Dyn 3:547–568

    Google Scholar 

  47. Maltseva TV, Altmann K–H, Egli M, Chattopadhyaya J (1998) J Biomol Struct Dyn 3:569–578

    Google Scholar 

  48. Ikeda H, Fermandez R Wilk A, Barchi Jr JJ, Huang X, Marquez VE (1998) Nucleic Acid Res 9:2237–2244

    Article  Google Scholar 

  49. Gelasco A, Lippard SJ (1998) Biochemistry 26:9230–9239

    Article  Google Scholar 

  50. Protein Data Bank Contents Guide. Atomic co-ordinates entry format description,http://www.rcsb.org

  51. IUPAC: International Union of Pure and Applied Chemistry,http://:www.chem.qmul.ac.uk/iupac

  52. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) J Am Chem Soc 106:765–784

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astero Provata.

Appendices

Appendix A

Initial structures are shown in Tables 6 and 7.

Table 6 The values for the bonds, and angles and torsion angles for the B-DNA strand from the pdb file 166D.pdb
Table 7 The values for the torsion angles for the B-DNA strand from the pdb file 166D.pdb

Appendix B

The average starting and final energy values of the minimized double B-DNA strands are shown in Table 8.

Table 8 The average starting and final energy values of the minimized double B-DNA strands. The energy values are composed from the addition of all initials and final potentials of each base which composed the DNA fragments

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sfyrakis, K., Provata, A., Povey, D.C. et al. Local sequential minimization of double stranded B-DNA using Monte Carlo annealing. J Mol Model 10, 185–197 (2004). https://doi.org/10.1007/s00894-004-0182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0182-0

Keywords

Navigation