Skip to main content
Log in

Rational design of a lipase to accommodate catalysis of Baeyer–Villiger oxidation with hydrogen peroxide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism and potential energy surface for the Baeyer–Villiger oxidation of acetone with hydrogen peroxide catalyzed by a Ser105–Ala mutant of Candida antarctica Lipase B has been determined using ab initio and density functional theories. Initial substrate binding has been studied using an automated docking procedure and molecular dynamics simulations. Substrates were found to bind to the active site of the mutant. The activation energy for the first step of the reaction, the nucleophilic attack of hydrogen peroxide on the carbonyl carbon of hydrogen peroxide, was calculated to be 4.4 kcal mol−1 at the B3LYP/6-31+G* level. The second step, involving the migration of the alkyl group, was found to be the rate-determining step with a computed activation energy of 19.9 kcal mol−1 relative the reactant complex. Both steps were found to be lowered considerably in the reaction catalyzed by the mutated lipase, compared to the uncatalyzed reaction. The first step was lowered by 36.0 kcal mol−1 and the second step by 19.5 kcal mol−1. The second step of the reaction, the rearrangement step, has a high barrier of 27.7 kcal mol−1 relative to the Criegee intermediate. This could lead to an accumulation of the intermediate. It is not clear whether this result is an artifact of the computational procedure, or an indication that further mutations of the active site are required.

Figure Second TS (18TS) in the Baeyer–Villiger oxidation in a mutant of CALB. Distances in Å

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Scheme 2.
Scheme 3.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Uppenberg J, Ohrner N, Norin M, Hult K, Kleywegt GJ, Patkar S, Waagen V, Anthonsen T, Jones TA (1995) Biochemistry 34:16838–16851

    CAS  PubMed  Google Scholar 

  2. Magnusson A, Hult K, Holmquist M (2001) J Am Chem Soc 123:4354–4355

    Article  CAS  PubMed  Google Scholar 

  3. Branneby C, Carlqvist P, Magnusson A, Hult K, Brinck T, Berglund P (2003) J Am Chem Soc 125:874–875

    Article  CAS  PubMed  Google Scholar 

  4. Plesnicar B (1983) In: Patai S (ed) The chemistry of peroxides. Wiley, Chichester, p 559 and references therein

  5. Renz M, Meunier B (1999) Eur J Org Chem 4:737–750 and references therein

    Article  Google Scholar 

  6. Emmons WD, Lucas GB (1955) J Am Chem Soc 77:2287–2288

    CAS  Google Scholar 

  7. McClure J, Williams PH (1962) J Org Chem 27:24–26

    CAS  Google Scholar 

  8. Walsh CT, Chen YCJ (1988) Angew Chem Int Ed Engl 27:333–343 and references therein

    Google Scholar 

  9. Roberts SM, Wan PWH (1998) J Mol Catal B 4:111–136 and references therein

    Article  CAS  Google Scholar 

  10. Lemoult SC, Richardson PF, Roberts SM (1995) J Chem Soc Perkin Trans 1 2:89–91

    Google Scholar 

  11. Pchelka BK, Gelo-Pujic M, Guibé-Jampel EJ (1998) J Chem Soc Perkin Trans 1 17:2625–2627

    Article  Google Scholar 

  12. Björkling F, Frykman H, Godtfredsen SE, Kirk O (1992) Tetrahedron 48:4587–4592

    Article  Google Scholar 

  13. Carter P, Wells JA (1988) Nature 332:564–568

    CAS  PubMed  Google Scholar 

  14. Stoute VA, Winnik MA, Csizmiadia IG (1974) J Am Chem Soc 96:6388–6393

    CAS  Google Scholar 

  15. Okuno Y (1997) Chem Eur J 3:212–218

    CAS  Google Scholar 

  16. Cardenas R, Cetina R, Lagunez-Otero J, Reyes L (1997) J Phys Chem A 101:192–200

    Article  CAS  Google Scholar 

  17. Cardenas R, Cetina R, Lagunez-Otero J, Reyes L (2000) J Mol Struct (THEOCHEM) 497:211–225

    Google Scholar 

  18. Hawthorne MF, Emmons WD, McCallum KS (1958) J Am Chem Soc 80:6393–6398

    CAS  Google Scholar 

  19. Carlqvist P, Eklund R, Brinck T (2001) J Org Chem 66:1193–1199

    Article  CAS  Google Scholar 

  20. Hu C-H, Brinck T, Hult K (1998) Int J Quantum Chem 69:89–103

    Article  CAS  Google Scholar 

  21. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Google Scholar 

  22. Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723

    CAS  PubMed  Google Scholar 

  23. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta SJ, Weiner P (1984) J Am Chem Soc 106:765–784

    CAS  Google Scholar 

  24. Besler BH, Merz KM, Kollman PA (1990) J Comput Chem 11:431–439

    CAS  Google Scholar 

  25. Åqvist J, Medina C, Samuelsson J (1994) Protein Eng 7:385–391

    PubMed  Google Scholar 

  26. Marelius J, Hanssson T, Åqvist J (1998) Int J Quantum Chem 69:77–88

    Article  CAS  Google Scholar 

  27. Kollman PA (1993) Chem Rev 93:2395–2417

    CAS  Google Scholar 

  28. van Gunsteren WF, Berendsen HJC (1987) Groningen molecular simulation (GROMOS) library manual. Biomos, Groningen, The Netherlands

  29. Marelius J, Kolmodin K, Feierberg I, Åqvist J (1998) J Mol Graph Model 16:213–225

    Article  CAS  PubMed  Google Scholar 

  30. Åqvist J, van Gunsteren WF, Leijonmarck M, Tapia O (1985) J Mol Biol 183:461–477

    PubMed  Google Scholar 

  31. Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  33. Martin JML, EL-Yazal J, Francois J-P (1995) Mol Phys 86:1437–1450

    CAS  Google Scholar 

  34. Bauschlicher Jr CW, Partridge H (1995) Chem Phys Lett 240:533–540

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann E, Burant JC, Dapprich S, Millam JM., Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Rev A7. Gaussian, Pittsburgh Pa.

Download references

Acknowledgement

This work was supported by computing resources by the Swedish National Allocations Committee (SNAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tore Brinck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlqvist, P., Eklund, R., Hult, K. et al. Rational design of a lipase to accommodate catalysis of Baeyer–Villiger oxidation with hydrogen peroxide. J Mol Model 9, 164–171 (2003). https://doi.org/10.1007/s00894-003-0128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0128-y

Keywords

Navigation