Abu-Jbara, A., Ezra, J., Radev, D.R.: Purpose and polarity of citation: towards NLP-based bibliometrics. In: Proceedings of the 2013 Conference of the North American Chapter of the Association of Computational Linguistics: Human Language Technologies, NAACL-HLT’13, pp. 596–606 (2013)
Abu-Jbara, A., Radev, D.R.: Coherent citation-based summarization of scientific papers. In: Proceedings of the 2011 Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT’11, pp. 500–509 (2011)
Abu-Jbara, A., Radev, D.R.: Reference scope identification in citing sentences. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT’12, pp. 80–90 (2012)
Ahmad, S., Afzal, M.T.: Combining co-citation and metadata for recommending more related papers. In: Proceedings of the 15th International Conference on Frontiers of Information Technology, FIT’17, pp. 218–222 (2017)
Aksnes, D.W.: A macro study of self-citation. Scientometrics 56(2), 235–246 (2003)
Google Scholar
AllenAI: Science Parse (2019). https://github.com/allenai/science-parse. Accessed 06 April 2020
Alvarez, M.H., Gómez, J.M.: Survey about citation context analysis: tasks, techniques, and resources. Nat. Lang. Eng. 22(3), 327–349 (2016)
Google Scholar
Alzoghbi, A., Ayala, V.A.A., Fischer, P.M., Lausen, G.: Pubrec: recommending publications based on publicly available meta-data. In: Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB, pp. 11–18 (2015)
Anand, A., Chakraborty, T., Das, A.: FairScholar: balancing relevance and diversity for scientific paper recommendation. In: Proceedings of the 39th European Conference on IR Research, ECIR’17, pp. 753–757 (2017)
Annalingam, A., Damayanthi, H., Jayawardena, R., Ranasinghe, P.: Determinants of the citation rate of medical research publications from a developing country. SpringerPlus 3(1), 140 (2014)
Google Scholar
Bai, X., Wang, M., Lee, I., Yang, Z., Kong, X., Xia, F.: Scientific paper recommendation: a survey. IEEE Access. 7, 9324–9339 (2019)
Google Scholar
Bast, H., Korzen, C.: A benchmark and evaluation for text extraction from PDF. In: Proceedings of the 17th Joint Conference on Digital Libraries, JCDL’17, pp. 99–108 (2017)
Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., Gipp, B.: Towards reproducibility in recommender-systems research. User Model. User-Adapt. Interact. 26(1), 69–101 (2016)
Google Scholar
Beel, J., Gipp, B.: Google scholar’s ranking algorithm: an introductory overview. In: Proceedings of the 12th International Conference on Scientometrics and Informetrics, ISSI’09, pp. 230–241 (2009)
Beel, J., Gipp, B., Langer, S., Breitinger, C.: Research-paper recommender systems: a literature survey. Int. J. Digit. Lib. 17(4), 305–338 (2016)
Google Scholar
Beel, J., Gipp, B., Langer, S., Genzmehr, M.: Docear: an academic literature suite for searching, organizing and creating academic literature. In: Proceedings of the 2011 Joint International Conference on Digital Libraries, JCDL’11, pp. 465–466 (2011)
Beel, J., Gipp, B., Langer, S., Genzmehr, M., Wilde, E., Nürnberger, A., Pitman, J.: Introducing Mr. DLib: a machine-readable digital library. In: Proceedings of the 2011 Joint International Conference on Digital Libraries, JCDL’11, pp. 463–464 (2011)
Beel, J., Langer, S.: A comparison of offline evaluations, online evaluations, and user studies in the context of research-paper recommender systems. In: Proceedings of the 19th International Conference on Theory and Practice of Digital Libraries, TPDL’15, pp. 153–168 (2015)
Bertin, M., Atanassova, I., Gingras, Y., Larivière, V.: The invariant distribution of references in scientific articles. J. Assoc. Inf. Sci. Technol. 67(1), 164–177 (2016)
Google Scholar
Bethard, S., Jurafsky, D.: Who should i cite: learning literature search models from citation behavior. In: Proceedings of the 19th ACM Conference on Information and Knowledge Management, CIKM’10, pp. 609–618 (2010)
Bhagavatula, C., Feldman, S., Power, R., Ammar, W.: Content-based citation recommendation. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT’18, pp. 238–251 (2018)
Bird, S., Dale, R., Dorr, B.J., Gibson, B.R., Joseph, M.T., Kan, M.-Y., Lee, D., Powley, B., Radev, D.R., Tan, Y.F.: The ACL Anthology Reference Corpus: A Reference Dataset for Bibliographic Research in Computational Linguistics. In: Proceedings of the 6th International Conference on Language Resources and Evaluation, LREC’08 (2008)
Bonab, H., Zamani, H., Learned-Miller, E.G., Allan, J.: Citation worthiness of sentences in scientific reports. In: Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR’18, pp. 1061–1064 (2018)
Bornmann, L., Daniel, H.-D.: What do citation counts measure? A review of studies on citing behavior. J. Document. 64(1), 45–80 (2008)
Google Scholar
Bornmann, L., Mutz, R.: Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J. Assoc. Inf. Sci. Technol. 66(11), 2215–2222 (2015)
Google Scholar
Kurilla, B.: Can too much science be a bad thing? Growth in scientific publishing as a barrier to science communication (2015). http://geekpsychologist.com/can-too-much-science-be-a-bad-thing-growth-in-scientific-publishing-as-a-barrier-to-science-communication/. Accessed 19 June 2019
Buter, R.K., van Raan, A.F.J.: Non-alphanumeric characters in titles of scientific publications: an analysis of their occurrence and correlation with citation impact. J. Inf. 5(4), 608–617 (2011)
Google Scholar
Cai, X., Han, J., Li, W., Zhang, R., Pan, S., Yang, L.: A three-layered mutually reinforced model for personalized citation recommendation. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6026–6037 (2018)
Google Scholar
Cai, X., Han, J., Yang, L.: Generative adversarial network based heterogeneous bibliographic network representation for personalized citation recommendation. In: Proceedings of the 32th AAAI Conference on Artificial Intelligence, AAAI’18, pp. 5747–5754 (2018)
Xiaoyan Cai, Y., Zheng, L.Y., Dai, T., Guo, L.: Bibliographic network representation based personalized citation recommendation. IEEE Access 7, 457–467 (2019)
Google Scholar
Callaham, M., Wears, R.L., Weber, E.: Journal prestige, publication bias, and other characteristics associated with citation of published studies in peer-reviewed journals. J. Am. Med. Assoc. 287(21), 2847–50 (2002)
Google Scholar
Caragea, C., Wu, J., Ciobanu, A.M., Williams, K., Ramírez, J.P.F., Chen, H.-H., Wu, Z., Giles, C.L.: CiteSeer x : a scholarly big dataset. In: Proceedings of the 36th European Conference on IR Research, ECIR’14, pp. 311–322 (2014)
Casati, F., Giunchiglia, F., Marchese, M.: Liquid publications: scientific publications meet the web. Technical report, University of Trento (2007)
Case, D.O., Higgins, G.M.: How can we investigate citation behavior? A study of reasons for citing literature in communication. J. Am. Soc. Inf. Sci. 51(7), 635–645 (2000)
Google Scholar
Chakraborty, T., Modani, N., Narayanam, R., Nagar, S.: DiSCern: a diversified citation recommendation system for scientific queries. In: Proceedings of the 31st IEEE International Conference on Data Engineering, ICDE’15, pp. 555–566 (2015)
Chakraborty, T., Narayanam, R.: All fingers are not equal: intensity of references in scientific articles. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP’16, pp. 1348–1358 (2016)
Cohn, D.A., Hofmann, T.: The missing link—a probabilistic model of document content and hypertext connectivity. In: Advances in Neural Information Processing Systems 13, NIPS’00, pp. 430–436 (2000)
Constantin, A., Pettifer, S., Voronkov, A.: PDFX: fully-automated PDF-to-XML conversion of scientific literature. In: Proceedings of the 2013 ACM Symposium on Document Engineering, DocEng’13, pp. 177–180 (2013)
Councill, I.G., Giles, C.L., Kan, M.-Y.: ParsCit: an open-source CRF reference string parsing package. In: Proceedings of the International Conference on Language Resources and Evaluation, LREC’08 (2008)
CrossRef Labs. pdf-extract. https://github.com/CrossRef/pdfextract, (2015). Accessed: 31 January 2018
Dai, T., Zhu, L., Cai, X., Pan, S., Yuan, S.: Explore semantic topics and author communities for citation recommendation in bipartite bibliographic network. J. Ambient Intell. Hum. Comput. 9(4), 957–975 (2018)
Google Scholar
Dai, T., Zhu, L., Wang, Y., Zhang, H., Cai, X., Zheng, Y.: Joint model feature regression and topic learning for global citation recommendation. IEEE Access 7, 1706–1720 (2019)
Google Scholar
Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech.: Theory Experiment 2005(09), P09008 (2005)
MATH
Google Scholar
Ding, Y., Zhang, G., Chambers, T., Song, M., Wang, X., Zhai, C.: Content-based citation analysis: the next generation of citation analysis. J. Assoc. Inf. Sci. Technol. 65(9), 1820–1833 (2014)
Google Scholar
Duma, D., Klein, E.: Citation resolution: a method for evaluating context-based citation recommendation systems. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL’14, pp. 358–363 (2014)
Duma, D., Klein, E., Liakata, M., Ravenscroft, J., Clare, A.: Rhetorical classification of anchor text for citation recommendation. D-Lib Mag. 22(9/10), 1 (2016)
Google Scholar
Duma, D., Liakata, M., Clare, A., Ravenscroft, J., Klein, E.: Applying core scientific concepts to context-based citation recommendation. In: Proceedings of the 10th international conference on language resources and evaluation, LREC’16 (2016)
Ebesu, T., Fang, Y.: Neural citation network for context-aware citation recommendation. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’17, pp. 1093–1096 (2017)
Elkiss, A., Shen, S., Fader, A., Erkan, G., States, D.J., Radev, D.R.: Blind men and elephants: What do citation summaries tell us about a research article? J. Assoc. Inf. Sci. Technol. 59(1), 51–62 (2008)
Google Scholar
Faensen, D., Faulstich, L., Schweppe, H., Hinze, A., Steidinger, A.: Hermes: a notification service for digital libraries. In: Proceedings of the Joint Conference on Digital Libraries, JCDL’01, pp. 373–380 (2001)
Färber, M., Sampath, A., Jatowt, A.: PaperHunter: a system for exploring papers and citation contexts. In: Proceedings of the 41th European Conference on Information Retrieval, ECIR’19 (2019)
Färber, M., Thiemann, A., Jatowt, A.: A high-quality gold standard for citation-based tasks. In: Proceedings of the International Conference on Language Resources and Evaluation, LREC’18 (2018)
Färber, M., Thiemann, A., Jatowt, A.: CITEWERTs: a system combining cite-worthiness with citation recommendation. In: Proceedings of the 40th European Conference on Information Retrieval, ECIR’18, pp. 815–819 (2018)
Färber, M., Thiemann, A., Jatowt, A.: To cite, or not to cite? Detecting citation contexts in text. In: Proceedings of the 40th European Conference on Information Retrieval, ECIR’18, pp. 598–603 (2018)
Fetahu, B., Markert, K., Anand, A.: Automated news suggestions for populating wikipedia entity pages. In: Proceedings of the 24th ACM international conference on information and knowledge management, CIKM’15, pp. 323–332 (2015)
Fetahu, B., Markert, K., Nejdl, W., Anand, A.: Finding news citations for wikipedia. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM’16, pp 337–346 (2016)
Fister, I., Fister, I., Perc, M.: Toward the discovery of citation cartels in citation networks, Vol. 4, pp 49 (2016)
Fortunato, S., Bergstrom, C.T., Börner, K., Evans, J.A., Helbing, D., Milojević, S., Petersen, A.M., Radicchi, F., Sinatra, R., Uzzi, B., et al.: Science of science. Science 359(6379), eaao0185 (2018)
Google Scholar
Ganguly, S., Pudi, V.: Paper2vec: Combining Graph and Text Information for Scientific Paper Representation. In: Proceedings of the 39th European Conference on IR Research, ECIR’17, pp. 383–395 (2017)
Gao, Z.: Examining influences of publication dates on citation recommendation systems. In: Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD’15, pp. 1400–1405 (2015)
Ghosh, S., Das, D., Chakraborty, T.: Determining sentiment in citation text and analyzing its impact on the proposed ranking index. CoRR. arXiv:1707.01425 (2017)
Giles, C.L., Bollacker, K.D., Lawrence, S.: CiteSeer: an automatic citation indexing system. In: Proceedings of the 3rd ACM International Conference on Digital Libraries, DL’98, pp. 89–98 (1998)
Gipp, B.: Citation-based Plagiarism Detection—Detecting Disguised and Cross-language Plagiarism using Citation Pattern Analysis. Springer, Berlin (2014)
Google Scholar
Gori, M., Pucci, A.: Research paper recommender systems: a random-walk based approach. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, WI’06, pp. 778–781 (2006)
Guo, L., Cai, X., Hao, F., Dejun, M., Fang, C., Yang, L.: Exploiting fine-grained co-authorship for personalized citation recommendation. IEEE Access 5, 12714–12725 (2017)
Google Scholar
Hagen, M., Beyer, A., Gollub, T., Komlossy, K., Stein, B.: Supporting scholarly search with Keyqueries. In: Proceedings of the 38th European Conference on IR Research, ECIR’16, pp. 507–520 (2016)
Han, J., Song, Y., Zhao, W.X., Shi, S., Zhang, H.: hyperdoc2vec: distributed representations of hypertext documents. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL’18, pp. 2384–2394 (2018)
Hashemi, S.H., Neshati, M., Beigy, H.: Expertise retrieval in bibliographic network: a topic dominance learning approach. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, pp. 1117–1126 (2013)
He, J., Nie, J.-Y., Lu, Y., Zhao, W.X.: Position-aligned translation model for citation recommendation. In: Proceedings of the 19th International Symposium on String Processing and Information Retrieval, SPIRE’12, pp. 251–263 (2012)
He, Q., Chen, B., Pei, J., Qiu, B., Mitra, P., Giles, C.L: Detecting topic evolution in scientific literature: how can citations help? In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM’09, pp. 957–966 (2009)
He, Q., Kifer, D., Pei, J., Mitra, P., Giles, C.L.: Citation recommendation without author supervision. In: Proceedings of the 4th International Conference on Web Search and Web Data Mining, WSDM’11, pp. 755–764 (2011)
He, Q., Pei, J., Kifer, D., Mitra, P., Giles, C.L.: Context-aware citation recommendation. In: Proceedings of the 19th International Conference on World Wide Web, WWW’10, pp. 421–430 (2010)
Hsiao, B.-Y., Chung, C.-H., Dai, B.-R.: A model of relevant common author and citation authority propagation for citation recommendation. In: Proceedings of the 16th IEEE International Conference on Mobile Data Management, MDM’15, pp. 117–119 (2015)
Huang, W., Kataria, S., Caragea, C., Mitra, P., Giles, C.L., Rokach, L.: Recommending citations: translating papers into references. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM’12, pp. 1910–1914 (2012)
Huang, W., Wu, Z., Chen, L., Mitra, P., Giles, C.L.: A neural probabilistic model for context based citation recommendation. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI’15, pp. 2404–2410 (2015)
Huang, W., Wu, Z., Mitra, P., Giles, C.L.: RefSeer: a citation recommendation system. In: Proceedings of the 14th joint conference on digital libraries, JCDL’14, pp. 371–374 (2014)
Huynh, T., Hoang, K., Do, L., Tran, H., Luong, H.P., Gauch, S.: Scientific publication recommendations based on collaborative citation networks. In: Proceedings of the International Conference on Collaboration Technologies and Systems, CTS’12, pp. 316–321 (2012)
Hyland, K.: Self-citation and self-reference: credibility and promotion in academic publication. J. Assoc. Inf. Sci. Technol. 54(3), 251–259 (2003)
Google Scholar
Ishita, E., Hagiwara, Y., Watanabe, Y., Tomiura, Y.: Which parts of search results do researchers check when selecting academic documents? In: Proceedings of the 18th on Joint Conference on Digital Libraries, JCDL’18, pp. 345–346 (2018)
Jack, K., López-García, P., Hristakeva, M., Kern, R.: Citation needed: filling in Wikipedia’s citation shaped holes. In: Proceedings of the 1st Workshop on Bibliometric-enhanced information retrieval, BIR’14, pp. 45–52 (2014)
Jeong, C., Jang, S., Shin, H., Park, E., Choi, S.: A context-aware citation recommendation model with BERT and graph convolutional networks. CoRR. arXiv:1903.06464 (2019)
Jia, H., Saule, E.: An analysis of citation recommender systems: beyond the obvious. In: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining, ASONAM’17, pp. 216–223 (2017)
Jia, H., Saule, E.: Local is good: a fast citation recommendation approach. In: Proceedings of the 40th European Conference on IR Research, ECIR’18, pp. 758–764 (2018)
Jiang, Z.: Citation recommendation via time-series scholarly topic analysis and publication prior analysis. TCDL Bull. 9(2), 1 (2013)
Google Scholar
Jiang, Z., Liu, X., Gao, L.: Dynamic topic/citation influence modeling for chronological citation recommendation. In: Proceedings of the 5th International Workshop on Web-scale Knowledge Representation Retrieval & Reasoning, Web-KR@CIKM’14, pp. 15–18 (2014)
Jiang, Z., Liu, X., Gao, L.: Chronological citation recommendation with information-need shifting. In: Proceedings of the 24th International Conference on Information and Knowledge Management, CIKM’15, pp. 1291–1300 (2015)
Jiang, Z., Lu, Y., Liu, X.: Cross-language citation recommendation via publication content and citation representation fusion. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries. JCDL’18, pp. 347–348 (2018)
Jiang, Z., Yin, Y., Gao, L., Lu, Y., Liu, X.: Cross-language citation recommendation via hierarchical representation learning on heterogeneous graph. In: Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’18, pp. 635–644 (2018)
Kataria, S., Mitra, P., Bhatia, S.: Utilizing context in generative bayesian models for linked corpus. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI’10 (2010)
Klamma, R., Pham, M.C., Cao, Y.: You never walk alone: recommending academic events based on social network analysis. In: Proceedings of the 1st international conference on complex sciences, Complex’09, pp. 657–670 (2009)
Kobayashi, Y., Shimbo, M., Matsumoto, Y.: Citation recommendation using distributed representation of discourse facets in scientific articles. In: Proceedings of the 2018 Joint International Conference on Digital Libraries, JCDL’18, pp. 243–251 (2018)
Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Diversifying citation recommendations. ACM Trans. Intell. Syst. Technol. 5(4), 55:1–55:21 (2014)
Google Scholar
Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, Ü.V.: TheAdvisor: a webservice for academic recommendation. In: Proceedings of the 13th Joint Conference on Digital Libraries, JCDL ’13, pp. 433–434 (2013)
Peder Olesen Larsen and Markus Von Ins: The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index. Scientometrics 84(3), 575–603 (2010)
Google Scholar
Li, S., Brusilovsky, P., Sen, S., Cheng, X.: Conference paper recommendation for academic conferences. IEEE Access 6, 17153–17164 (2018)
Google Scholar
Lin, J., Fenner, M.: Altmetrics in evolution: defining & redefining the ontology of article-level metrics. Inf. Stand. Q. 25(2), 20–26 (2013)
Google Scholar
Liu, X., Suel, T., Memon, N.D.: A robust model for paper reviewer assignment. In: Proceedings of the 8th ACM conference on recommender systems, RecSys’14, pp. 25–32 (2014)
Liu, X., Yu, Y., Guo, C., Sun, Y.: Meta-path-based ranking with pseudo relevance feedback on heterogeneous graph for citation recommendation. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management, CIKM 2014, pp. 121–130 (2014)
Liu, X., Yu, Y., Guo, C., Sun, Y., Gao, L.: Full-text based context-rich heterogeneous network mining approach for citation recommendation. In: Proceedings of the Joint Conference on Digital Libraries, JCDL’14, pp. 361–370 (2014)
Liu, X., Zhang, J., Guo, C.: Citation recommendation via proximity full-text citation analysis and supervised topical prior. In: Proceedings of the iConference 2016 (2016)
Liu, Y., Yan, R., Yan, H.: Guess what you will cite: personalized citation recommendation based on users’ preference. In: Proceedings of the 9th Asia Information Retrieval Societies Conference, AIRS’13, pp. 428–439 (2013)
Liu, Z.: Citation theories in the framework of international flow of information: new evidence with translation analysis. J. Am. Soc. Inf. Sci. 48(1), 80–87 (1997)
Google Scholar
Livne, A., Gokuladas, V., Teevan, J., Dumais, S.T., Adar, E.: CiteSight: supporting contextual citation recommendation using differential search. In: Proceedings of the 37th International Conference on Research and Development in Information Retrieval, SIGIR ’14, pp. 807–816 (2014)
Lopez, P.: GROBID: combining automatic bibliographic data recognition and term extraction for scholarship publications. In: Proceedings of the 13th European Conference on Digital Libraries, ECDL’09, pp. 473–474 (2009)
Lopez, P., Romary, L.: GROBID—Information Extraction from Scientific Publications. ERCIM News, 2015(100) (2015)
Lu, W.-Y., Yang, Y.-B., Mao, X.-J., Zhu, Q.-H.: Effective citation recommendation by unbiased reference priority recognition. In: Proceedings of the 17th Asia-Pacific Web Conference, APWeb’15, pp. 536–547 (2015)
Lu, Y., He, J., Shan, D., Yan, H.: Recommending citations with translation model. In: Proceedings of the 20th ACM Conference on Information and Knowledge Management, CIKM’11, pp. 2017–2020 (2011)
Mabe, M., Mulligan, A.: What journal authors want: ten years of results from Elsevier’s author feedback programme. New Rev. Inf. Netw. 16(1), 71–89 (2011)
Google Scholar
Mahdabi, P., Crestani, F.: Query-driven mining of citation networks for patent citation retrieval and recommendation. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM’14, pp. 1659–1668 (2014)
McNee, S.M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S.K., Rashid, A.M., Konstan, J.A., Riedl, J.: On the recommending of citations for research papers. In: Proceeding on the ACM 2002 Conference on Computer Supported Cooperative Work, CSCW’02, pp. 116–125 (2002)
Färber, M., Sampath, A.: Determining the linguistic types of citations. In: Proceedings of the 22nd International Conference on Theory and Practice of Digital Libraries, TPDL’18 (2019)
Mishra, A.: Linking today’s Wikipedia and news from the past. In: Proceedings of the 7th PhD workshop in information and knowledge management, PIKM’14, pp. 1–8 (2014)
Mishra, A., Berberich, K.: Leveraging semantic annotations to link wikipedia and news archives. In: Proceedings of the 38th European conference on IR research, ECIR’16, pp. 30–42 (2016)
Mohammad, S., Dorr, B.J., Egan, M., Awadallah, A.H., Muthukrishnan, P., Qazvinian, V., Radev, D.R., Zajic, D.M.: Using citations to generate surveys of scientific paradigms. In: Proceedings of the 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, NAACL-HLT’09, pp. 584–592 (2009)
Montuschi, P., Benso, A.: Augmented reading: the present and future of electronic scientific publications. IEEE Comput. 47(1), 64–74 (2014)
Google Scholar
Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the 5th ACM Conference on Digital Libraries, DL’00, pp. 195–204. ACM, New York (2000)
Moravcsik, M.J., Murugesan, P.: Some results on the function and quality of citations. Soc. Stud. Sci. 5(1), 86–92 (1975)
Google Scholar
Dejun, M., Guo, L., Cai, X., Hao, F.: Query-focused personalized citation recommendation with mutually reinforced ranking. IEEE Access 6, 3107–3119 (2018)
Google Scholar
Nallapati, R., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint latent topic models for text and citations. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’08, pp. 542–550 (2008)
Noia, T.D., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, I-SEMANTICS ’12, pp. 1–8 (2012)
NSF. Science and Engineering Indicators 2014. https://www.nsf.gov/statistics/seind14/ (2014). Accessed 19 June 2019
Oh, S., Lei, Z., Lee, W.-C., Mitra, P., Yen, J.: CV-PCR: a context-guided value-driven framework for patent citation recommendation. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, pp. 2291–2296 (2013)
Pasula, H., Marthi, B., Milch, B., Russell, S.J., Shpitser, I.: Identity uncertainty and citation matching. In: Advances in Neural Information Processing Systems 15: Proceedings of the Neural Information Processing Systems Conference, NIPS’02, pp. 1401–1408 (2002)
Peng, H., Liu, J., Lin, C.-Y.: News citation recommendation with implicit and explicit semantics. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL’16 (2016)
Peroni, S., Shotton, D.M.: FaBiO and CiTO: ontologies for describing bibliographic resources and citations. J. Web Semant. 17, 33–43 (2012)
Google Scholar
Pertsas, V., Constantopoulos, P.: Scholarly ontology: modelling scholarly practices. Int. J. Digit. Lib. 18(3), 173–190 (2017)
Google Scholar
Evaggelia Pitoura, Panayiotis Tsaparas, Giorgos Flouris, Irini Fundulaki, Panagiotis Papadakos, Serge Abiteboul, and Gerhard Weikum: On measuring bias in online information. SIGMOD Rec. 46(4), 16–21 (2017)
Google Scholar
Prasad, A., Kaur, M., Kan, M.-Y.: Neural ParsCit: a deep learning-based reference string parser. Int. J. Digit. Lib. 19(4), 323–337 (2018)
Google Scholar
Radev, D.R., Muthukrishnan, P., Qazvinian, V., Abu-Jbara, A.: The ACL anthology network corpus. Lang. Resources Eval. 47(4), 919–944 (2013)
Google Scholar
Ravenscroft, J., Clare, A., Liakata, M.: HarriGT: a tool for linking news to science. In: Proceedings of ACL’18 System Demonstrations, pp. 19–24 (2018)
Ren, X., Liu, J., Yu, X., Khandelwal, U., Gu, Q., Wang, L., Han, J.: ClusCite: effective citation recommendation by information network-based clustering. In: Proceedings of the 20th International Conference on Knowledge Discovery and Data Mining, KDD’14, pp. 821–830 (2014)
Ritchie, A.: Citation context analysis for information retrieval. PhD thesis, University of Cambridge, UK (2009)
Ritchie, A., Robertson, S., Teufel, S.: Comparing citation contexts for information retrieval. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM’08, pp. 213–222 (2008)
Rokach, L., Mitra, P., Kataria, S., Huang, W., Giles, L.: A supervised learning method for context-aware citation recommendation in a large corpus. In: Proceedings of the Large-Scale and Distributed Systems for Information Retrieval Workshop, LSDS-IR’13, pp. 17–22 (2013)
Roy, D., Ray, K., Mitra, M.: From a scholarly big dataset to a test collection for bibliographic citation recommendation. In: Proceedings of Scholarly Big Data Workshop (2016)
Saier, T., Färber, M.: Bibliometric-enhanced arXiv: a data set for paper-based and citation-based tasks. In: Proceedings of the 8th International Workshop on Bibliometric-enhanced Information Retrieval, BIR’19, pp. 14–26 (2019)
Serenko, A., Dumay, J.: Citation classics published in knowledge management journals. Part II: studying research trends and discovering the Google Scholar Effect. J. Knowl. Manag. 19(6), 1335–1355 (2015)
Google Scholar
Sharma, R., Gopalani, D., Meena, Y.: Concept-based approach for research paper recommendation. In: Proceedings of the 7th International Conference on Pattern Recognition and Machine Intelligence, PReMI’17, pp. 687–692 (2017)
Singhal, A., Kasturi, R., Sivakumar, V., Srivastava, J.: Leveraging web intelligence for finding interesting research datasets. In: Proceedings of the 2013 International Conferences on Web Intelligence, WI’13, pp. 321–328 (2013)
Small, H.: On the shoulders of Robert Merton: Towards a normative theory of citation. Scientometrics 60(1), 71–79 (2004)
Google Scholar
Sollaci, L.B., Pereira, M.G.: The introduction, methods, results, and discussion (IMRAD) structure: a fifty-year survey. J. Med. Lib. Assoc. 92(3), 364 (2004)
Google Scholar
Steinert, L.: Beyond Similarity and Accuracy – A New Take on Automating Scientific Paper Recommendations. PhD thesis, University of Duisburg-Essen, Germany (2017)
Strohman, T., Bruce Croft, W., Jensen, D.: Recommending Citations for Academic Papers, Technical report (2007)
Strohman, T., Croft, W.B., Jensen, D.D.: Recommending citations for academic papers. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’07, pp. 705–706 (2007)
Subotic, S., Mukherjee, B.: Short and amusing: The relationship between title characteristics, downloads, and citations in psychology articles. Journal of Information Science 40(1), 115–124 (2014)
Google Scholar
Sugiyama, K., Kan, M.-Y.: Exploiting potential citation papers in scholarly paper recommendation. In: Proceedings of the 13th Joint Conference on Digital Libraries, JCDL ’13, pp. 153–162 (2013)
Sugiyama, K., Kan, M.-Y.: A comprehensive evaluation of scholarly paper recommendation using potential citation papers. Int. J. Digit. Lib. 16(2), 91–109 (2015)
Google Scholar
Sugiyama, K., Kumar, T., Kan, M.-Y., Tripathi, R.C.: Identifying citing sentences in research papers using supervised learning. In: Proceedings of the 2010 International Conference on Information Retrieval & Knowledge Management, CAMP’10, pp. 67–72. IEEE (2010)
Tahamtan, I., Afshar, A.S., Ahamdzadeh, K.: Factors affecting number of citations: a comprehensive review of the literature. Scientometrics 107(3), 1195–1225 (2016)
Google Scholar
Tahamtan, I., Bornmann, L.: Core elements in the process of citing publications: conceptual overview of the literature. J. Inf. 12(1), 203–216 (2018)
Google Scholar
Tang, J., Zhang, J.: A discriminative approach to topic-based citation recommendation. In Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD’09, pp. 572–579 (2009)
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’08, pp. 990–998 (2008)
Tang, X., Wan, X., Zhang, X.: Cross-language context-aware citation recommendation in scientific articles. In: Proceedings of the 37th International Conference on Research and Development in Information Retrieval, SIGIR ’14, pp. 817–826 (2014)
Teufel, S., Siddharthan, A., Tidhar, D.: Automatic classification of citation function. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, EMNLP’07, pp. 103–110 (2006)
Teufel, S., Siddharthan, A., Tidhar, D.: An annotation scheme for citation function. In: Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue, pp. 80–87 (2009)
Tkaczyk, D., Collins, A., Sheridan, P., Beel, J.: Evaluation and comparison of open source bibliographic reference parsers: a business use case. CoRR. arXiv:1802.01168 (2018)
Tkaczyk, D., Collins, A., Sheridan, P., Beel, J.: Machine learning vs. rules and out-of-the-box vs. retrained: an evaluation of open-source bibliographic reference and citation parsers. In: Proceedings of the 18th Joint Conference on Digital Libraries, JCDL’18, pp. 99–108 (2018)
Tkaczyk, D., Szostek, P., Fedoryszak, M., Dendek, P.J., Bolikowski, L.: CERMINE: automatic extraction of structured metadata from scientific literature. Int. J. Doc. Anal. Recognit. 18(4), 317–335 (2015)
Google Scholar
Todeschini, R., Baccini, A.: Handbook of Bibliometric Indicators: Quantitative Tools for Studying and Evaluating Research. Wiley, New York (2016)
MATH
Google Scholar
Valenzuela, M., Ha, V., Etzioni, O.: Identifying Meaningful Citations. In: Scholarly Big Data: AI Perspectives, Challenges, and Ideas, SBD’15 (2015)
Wang, P., Soergel, D.: A cognitive model of document use during a research project. Study I. Document selection. J. Am. Soc. Inf. Sci. 49(2), 115–133 (1998)
Google Scholar
Peiling Wang and Marilyn Domas White: A cognitive model of document use during a research project. Study II. Decisions at the reading and citing stages. J. Am. Soc. Inf. Sci. 50(2), 98–114 (1999)
Google Scholar
Ware, M., Mabe, M.: The STM Report: An overview of scientific and scholarly journal publishing (2015)
White, H.D.: Citation analysis and discourse analysis revisited. Appl. Ling. 25(1), 89–116 (2004)
Google Scholar
White, H.D.: Bag of works retrieval: TF*IDF weighting of co-cited works. In: Proceedings of the 3rd workshop on bibliometric-enhanced information retrieval, BIR’16, pp. 63–72 (2016)
Wilhite, A.W., Fong, E.A.: Coercive citation in academic publishing. Science 335(6068), 542–543 (2012)
Google Scholar
Wu, H., Hua, Y., Li, B., Pei, Y.: Enhancing citation recommendation with various evidences. In: Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD’12, pp. 1160–1165 (2012)
Wu, J., Sefid, A., Ge, A.C., Giles, C.L.: A supervised learning approach to entity matching between scholarly big datasets. In: Proceedings of the Knowledge Capture Conference, K-CAP’17, pp. 41:1–41:4 (2017)
Yang, L., Zhang, Z., Cai, X., Guo, L.: Citation recommendation as edge prediction in heterogeneous bibliographic network: a network representation approach. IEEE Access 7, 23232–23239 (2019)
Google Scholar
Libin Yang, Y., Zheng, X.C., Dai, H., Dejun, M., Guo, L., Dai, T.: A LSTM based model for personalized context-aware citation recommendation. IEEE Access 6, 59618–59627 (2018)
Google Scholar
Libin Yang, Y., Zheng, X.C., Pan, S., Dai, T.: Query-oriented citation recommendation based on network correlation. J. Intell. Fuzzy Syst. 35(4), 4621–4628 (2018)
Google Scholar
Yang, T., Jin, R., Chi, Y., Zhu, S.: Combining link and content for community detection: a discriminative approach. In: Proceedings of the 15th International Conference on Knowledge Discovery and Data Mining, KDD’09, pp. 927–936 (2009)
Yang, Z., Davison, B.D.: Venue recommendation: submitting your paper with style. In: Proceedings of the 11th International Conference on Machine Learning and Applications, ICMLA’12, pp. 681–686 (2012)
Yin, J., Li, X.: Personalized citation recommendation via convolutional neural networks. In: Proceedings of the 1st International Joint Conference on Web and Big Data, APWeb-WAIM’17, pp. 285–293 (2017)
Zarrinkalam, F., Kahani, M.: SemCiR: a citation recommendation system based on a novel semantic distance measure. Program 47(1), 92–112 (2013)
Google Scholar
Zhang, Y., Yang, L., Cai, X., Dai, H.: A novel personalized citation recommendation approach based on GAN. In: 24th International Symposium on Foundations of Intelligent Systems, ISMIS’18, pp. 268–278 (2018)