Skip to main content

Advertisement

Log in

Δ3-tubulin impairs mitotic spindle morphology and increases nuclear size in pancreatic cancer cells

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Cancer cell proliferation is affected by post-translational modifications of tubulin. Especially, overexpression or depletion of enzymes for modifications on the tubulin C-terminal region perturbs dynamic instability of the spindle body. Those modifications include processing of C-terminal amino acids of α-tubulin; detyrosination, and a removal of penultimate glutamic acid (Δ2). We previously found a further removal of the third last glutamic acid, which generates so-called Δ3-tubulin. The effects of Δ3-tubulin on spindle integrities and cell proliferation remain to be elucidated. In this study, we investigated the impacts of forced expression of Δ3-tubulin on the structure of spindle bodies and cell division in a pancreatic cancer cell line, PANC-1. Overexpression of HA-tagged Δ3-tubulin impaired the morphology and orientation of spindle bodies during cell division in PANC-1 cells. In particular, spindle bending was most significantly increased. Expression of EGFP-tagged Δ3-tubulin driven by the endogenous promoter of human TUBA1B also deformed and misoriented spindle bodies. Spindle bending and condensation defects were significantly observed by EGFP-Δ3-tubulin expression. Furthermore, EGFP-Δ3-tubulin expression increased the nuclear size in a dose-dependent manner of EGFP-Δ3-tubulin expression. The expression of EGFP-Δ3-tubulin tended to slow down cell proliferation. Taken together, our results demonstrate that Δ3-tubulin affects the spindle integrity and cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bakhoum SF, Cantley LC (2018) The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174:1347–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12:385–392

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  4. Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10:194–204

    Article  CAS  PubMed  Google Scholar 

  5. Janke C, Magiera MM (2020) The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 21:307–326

    Article  CAS  PubMed  Google Scholar 

  6. Ikegami K, Setou M (2010) Unique post-translational modifications in specialized microtubule architecture. Cell Struct Funct 35:15–22

    Article  CAS  PubMed  Google Scholar 

  7. Barra HS, Arce CA, Rodríguez JA, Caputto R (1974) Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins. Biochem Biophys Res Commun 60:1384–1390

    Article  CAS  PubMed  Google Scholar 

  8. Argaraña CE, Barra HS, Caputto R (1978) Release of [14C]tyrosine from tubulinyl-[14C]tyrosine by brain extract. Separation of a carboxypeptidase from tubulin-tyrosine ligase. Mol Cell Biochem 19:17–21

    Article  PubMed  Google Scholar 

  9. Eddé B, Rossier J, Le Caer JP, Desbruyères E, Gros F, Denoulet P (1990) Posttranslational glutamylation of α-tubulin. Science 247:83–85

    Article  ADS  PubMed  Google Scholar 

  10. Kimura Y, Kurabe N, Ikegami K, Tsutsumi K, Konishi Y, Kaplan OI, Kunitomo H, Iino Y, Blacque OE, Setou M (2010) Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs). J Biol Chem 285:22936–22941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rogowski K, van Dijk J, Magiera MM, Bosc C, Deloulme JC, Bosson A, Peris L, Gold ND, Lacroix B, Bosch Grau M, Bec N, Larroque C, Desagher S, Holzer M, Andrieux A, Moutin MJ, Janke C (2010) A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143:564–578

    Article  CAS  PubMed  Google Scholar 

  12. Paturle-Lafanechère L, Eddé B, Denoulet P, Van Dorsselaer A, Mazarguil H, Le Caer JP, Wehland J, Job D (1991) Characterization of a major brain tubulin variant which cannot be tyrosinated. Biochemistry 30:10523–10528

    Article  PubMed  Google Scholar 

  13. Berezniuk I, Vu HT, Lyons PJ, Sironi JJ, Xiao H, Burd B, Setou M, Angeletti RH, Ikegami K, Fricker LD (2012) Cytosolic carboxypeptidase 1 is involved in processing α- and β-tubulin. J Biol Chem 287:6503–6517

    Article  CAS  PubMed  Google Scholar 

  14. Aillaud C, Bosc C, Saoudi Y, Denarier E, Peris L, Sago L, Taulet N, Cieren A, Tort O, Magiera MM, Janke C, Redeker V, Andrieux A, Moutin MJ (2016) Evidence for new C-terminally truncated variants of α-and β-tubulins. Mol Biol Cell 27:640–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gundersen GG, Bulinski JC (1986) Distribution of tyrosinated and nontyrosinated α-tubulin during mitosis. J Cell Biol 102:1118–1126

    Article  CAS  PubMed  Google Scholar 

  16. Lacroix B, van Dijk J, Gold ND, Guizetti J, Aldrian-Herrada G, Rogowski K, Gerlich DW, Janke C (2010) Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J Cell Biol 189:945–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piperno G, LeDizet M, Chang XJ (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 104:289–302

    Article  CAS  PubMed  Google Scholar 

  18. Barisic M, Silva e Sousa R, Tripathy SK, Magiera MM, Zaytsev AV, Pereira AL, Janke C, Grishchuk EL, Maiato H (2015) Microtubule detyrosination guides chromosomes during mitosis. Science 348:799–803

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferreira LT, Orr B, Rajendraprasad G, Pereira AJ, Lemos C, Lima JT, Guasch Boldú C, Ferreira JG, Barisic M, Maiato H (2020) α-Tubulin detyrosination impairs mitotic error correction by suppressing MCAK centromeric activity. J Cell Biol 219:e201910064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liao S, Rajendraprasad G, Wang N, Eibes S, Gao J, Yu H, Wu G, Tu X, Huang H, Barisic M, Xu C (2019) Molecular basis of vasohibins-mediated detyrosination and its impact on spindle function and mitosis. Cell Res 29:533–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Noatynska A, Gotta M, Meraldi P (2012) Mitotic spindle (DIS)orientation and DISease: cause or consequence? J Cell Biol 199:1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Godin JD, Colombo K, Molina-Calavita M, Keryer G, Zala D, Charrin BC, Dietrich P, Volvert ML, Guillemot F, Dragatsis I, Bellaiche Y, Saudou F, Nguyen L, Humbert S (2010) Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron 67:392–406

    Article  CAS  PubMed  Google Scholar 

  23. Bobinnec Y, Khodjakov A, Mir LM, Rieder CL, Eddé B, Bornens M (1998) Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol 143:1575–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abal M, Keryer G, Bornens M (2005) Centrioles resist forces applied on centrosomes during G2/M transition. Biol Cell 97:425–434

    Article  CAS  PubMed  Google Scholar 

  25. Paturle-Lafanechère L, Manier M, Trigault N, Pirollet F, Mazarguil H, Job D (1994) Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci 107:1529–1543

    Article  PubMed  Google Scholar 

  26. Smertenko A, Blume Y, Viklický V, Opatrný Z, Dráber P (1997) Post-translational modifications and multiple tubulin isoforms in Nicotiana tabacum L. cells. Planta 201:349–358

    Article  CAS  PubMed  Google Scholar 

  27. Banerjee A (2002) Increased levels of tyrosinated α-, βIII-, and βIV-tubulin isotypes in paclitaxel-resistant MCF-7 breast cancer cells. Biochem Biophys Res Commun 293:598–601

    Article  CAS  PubMed  Google Scholar 

  28. Mialhe A, Lafanechère L, Treilleux I, Peloux N, Dumontet C, Brémond A, Panh MH, Payan R, Wehland J, Margolis RL, Job D (2001) Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res 61:5024–5027

    CAS  PubMed  Google Scholar 

  29. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M (2011) Pancreatic cancer. The Lancet 378:607–620

    Article  Google Scholar 

  30. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  31. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

    Article  PubMed  Google Scholar 

  32. Murakami Y, Uemura K, Hashimoto Y, Kondo N, Nakagawa N, Takahashi S, Shintakuya R, Sueda T (2016) Survival effects of adjuvant gemcitabine plus S-1 chemotherapy on pancreatic carcinoma stratified by preoperative resectability status. J Surg Oncol 113:405–412

    Article  CAS  PubMed  Google Scholar 

  33. Kashiwaya K, Nakagawa H, Hosokawa M, Mochizuki Y, Ueda K, Piao L, Chung S, Hamamoto R, Eguchi H, Ohigashi H, Ishikawa O, Janke C, Shinomura Y, Nakamura Y (2010) Involvement of the tubulin tyrosine ligase-like family member 4 polyglutamylase in PELP1 polyglutamylation and chromatin remodeling in pancreatic cancer cells. Cancer Res 70:4024–4033

    Article  CAS  PubMed  Google Scholar 

  34. Li D, Sun X, Zhang L, Yan B, Xie S, Liu R, Liu M, Zhou J (2014) Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells. Protein Cell 5:214–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee KM, Cao D, Itami A, Pour PM, Hruban RH, Maitra A, Ouellette MM (2007) Class III β-tubulin, a marker of resistance to paclitaxel, is overexpressed in pancreatic ductal adenocarcinoma and intraepithelial neoplasia. Histopathology 51:539–546

    Article  CAS  PubMed  Google Scholar 

  36. McCarroll JA, Sharbeen G, Liu J, Youkhana J, Goldstein D, McCarthy N, Limbri LF, Dischl D, Ceyhan GO, Erkan M, Johns AL, Biankin AV, Kavallaris M, Phillips PA (2015) βIII-Tubulin: a novel mediator of chemoresistance and metastases in pancreatic cancer. Oncotarget 6:2235–2249

    Article  PubMed  Google Scholar 

  37. Ijaz F, Ikegami K (2021) Knock-in of labeled proteins into 5’utr enables highly efficient generation of stable cell lines. Cell Struct Funct 46:21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Longo PA, Kavran JM, Kim MS, Leahy DJ (2013) Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 529:227–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N (2007) Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316:417–421

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rasamizafy SF, Delsert C, Rabeharivelo G, Cau J, Morin N, van Dijk J (2021) Mitotic acetylation of microtubules promotes centrosomal plk1 recruitment and is required to maintain bipolar spindle homeostasis. Cells 10:1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Denarier E, Ecklund KH, Berthier G, Favier A, O’Toole ET, Gory-Fauré S, de Macedo L, Delphin C, Andrieux A, Markus SM, Boscheron C (2021) Modeling a disease-correlated tubulin mutation in budding yeast reveals insight into MAP-mediated dynein function. Mol Biol Cell 32:10

    Article  Google Scholar 

  42. Wang L, Paudyal SC, Kang Y, Owa M, Liang FX, Spektor A, Knaut H, Sánchez I, Dynlacht BD (2022) Regulators of tubulin polyglutamylation control nuclear shape and cilium disassembly by balancing microtubule and actin assembly. Cell Res 32:190–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Madoka Hamada and Yoko Hayashi for their technical assistance. This work was supported in part by JSPS Grants-in-Aids for Scientific Research (C) (22K08776) to K.U. and K.I., and by the Uehara Memorial Foundation (to K.I.). A part of this work was conducted in the Natural Science Center for Basic Research and Development at Hiroshima University (NBARD-00002) under the support from the MEXT Project to promote public utilization of advanced research infrastructure (Program for supporting the construction of core facilities; Grant Number JPMXS0441300023).

Author information

Authors and Affiliations

Authors

Contributions

KB, FI, and KI designed the research; KB, FI, and RN carried out the experiments; KB, RN and KI analyzed the data; KU and ST organized the collaboration; and KB and KI wrote the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Koji Ikegami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, K., Uemura, K., Nakazato, R. et al. Δ3-tubulin impairs mitotic spindle morphology and increases nuclear size in pancreatic cancer cells. Med Mol Morphol 57, 59–67 (2024). https://doi.org/10.1007/s00795-023-00373-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-023-00373-w

Keywords

Navigation