Skip to main content
Log in

An association between nuclear morphology and immunohistochemical expression of p53 and p16INK4A in lung cancer cells

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Nuclear atypia is one of the most important morphological features used to diagnose malignant neoplasms. The potential molecular alteration that causes nuclear atypia remains unknown. P53 and p16INK4A play crucial roles in cell cycle checkpoints and repairing DNA damage to maintain integrity of the genome. Thus, inactivation of p53 and p16INK4A has been hypothesized to alter the chromatin structure and result in nuclear atypia. This study examined 201 primary lung cancers for the immunohistochemical expression of p53 and p16INK4A, and analyzed potential associations with the essential elements of nuclear atypia, such as nuclear size, circularity of the outline, and the density and granularity of chromatin. Tumors that expressed high levels of p53 had larger nuclei with higher chromatin density and distorted nuclear outlines. Tumors that expressed low levels of p16INK4 had larger nuclei with distorted nuclear outlines. Thus, alterations in p53 and p16INK4A may be the potential cause of nuclear atypia in neoplastic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kumar V, Cotran RS (1992) Basic pathology. In: Robbins SL (ed). W.B. Sounders Company, Philadelphia

  2. D’Errico M, Calcagnile AS, Corona R, Fucci M, Annessi G et al (1997) p53 mutations and chromosome instability in basal cell carcinomas developed at an early or late age. Cancer Res 57:747–752

    PubMed  Google Scholar 

  3. Dalton WB, Yu B, Yang VW (2010) p53 suppresses structural chromosome instability after mitotic arrest in human cells. Oncogene 29:1929–1940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Duensing A, Duensing S (2010) Centrosomes, polyploidy and cancer. Adv Exp Med Biol 676:93–103

    Article  PubMed  CAS  Google Scholar 

  5. Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC (2004) Pathology and genetics—tumors of the lung, pleura, thymus and heart, IARC Press, Lyon. In: WHO (ed). IARC Press, Lyon

  6. Okudela K, Woo T, Mitsui H, Yazawa T, Shimoyamada H et al (2010) Morphometric profiling of lung cancers-its association with clinicopathologic, biologic, and molecular genetic features. Am J Surg Pathol 34:243–255

    Article  PubMed  Google Scholar 

  7. Bodner SM, Minna JD, Jensen SM, D’Amico D, Carbone D et al (1992) Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene 7:743–749

    PubMed  CAS  Google Scholar 

  8. Shimamoto T, Ohyashiki JH, Hirano T, Kato H, Ohyashiki K (2004) Hypermethylation of E-cadherin gene is frequent and independent of p16INK4A methylation in non-small cell lung cancer: potential prognostic implication. Oncol Rep 12:389–395

    PubMed  CAS  Google Scholar 

  9. McGee JO, Isaacson PG, Wright NA (1992) Principles of pathology. In: Wright NA (ed). Oxford University Press, Oxford

  10. Alberts B, Bray D, Lewis J, Martin R, Roberts K, et al. (1994) Molecular Biology of the Cell. In: Watson JD (ed). Garland Publishing, New York

  11. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285–R295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Thompson SL, Compton DA (2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188:369–381

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Paolo D’Avino P (2009) How to scaffold the contractile ring for a safe cytokinesis—lessons from Anillin-related proteins. J Cell Sci 122:1071–1079

    Article  Google Scholar 

  14. Li J, Wang J, Jiao H, Liao J, Xu X (2010) Cytokinesis and cancer: Polo loves ROCK‘n’ Rho(A). J Genet Genomics 37:159–172

    Article  PubMed  CAS  Google Scholar 

  15. Guasconi V, Souidi M, Ait-Si-Ali S (2005) Nuclear positioning, gene activity and cancer. Cancer Biol Ther 4:134–138

    Article  PubMed  CAS  Google Scholar 

  16. Cremer T, Cremer M, Dietzel S, Muller S, Solovei I et al (2006) Chromosome territories–a functional nuclear landscape. Curr Opin Cell Biol 18:307–316

    Article  PubMed  CAS  Google Scholar 

  17. Weichert W (2009) HDAC expression and clinical prognosis in human malignancies. Cancer Lett 280:168–176

    Article  PubMed  CAS  Google Scholar 

  18. Luczak MW, Jagodzinski PP (2006) The role of DNA methylation in cancer development. Folia Histochem Cytobiol 44:143–154

    PubMed  CAS  Google Scholar 

  19. Au Yeung CL, Tsang WP, Tsang TY, Co NN, Yau PL et al (2010) HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53. Oncol Rep 24:1599–1604

    PubMed  Google Scholar 

  20. Esteller M (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 45:629–656

    Article  PubMed  CAS  Google Scholar 

  21. Hobert JA, Eng C (2009) PTEN hamartoma tumor syndrome: an overview. Genet Med 11:687–694

    Article  PubMed  CAS  Google Scholar 

  22. Bunney TD, Katan M (2010) Phosphoinositide signalling in cancer: beyond PI3 K and PTEN. Nat Rev Cancer 10:342–352

    Article  PubMed  CAS  Google Scholar 

  23. Kondo M, Yokoyama T, Fukui T, Yoshioka H, Yokoi K et al (2005) Mutations of epidermal growth factor receptor of non-small cell lung cancer were associated with sensitivity to gefitinib in recurrence after surgery. Lung Cancer 50:385–391

    Article  PubMed  Google Scholar 

  24. Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4:988–993

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japanese Ministry of Education, Culture, Sports, and Science (Tokyo Japan), and by a grant from Smoking Research foundation (Tokyo, Japan). We especially thank Emi HONDA and Misa OTARA (Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Japan), and Hideaki MITSUI (Yokohama City University School of Medicine, Yokohama, Japan) for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Okudela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okudela, K. An association between nuclear morphology and immunohistochemical expression of p53 and p16INK4A in lung cancer cells. Med Mol Morphol 47, 130–136 (2014). https://doi.org/10.1007/s00795-013-0052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-013-0052-x

Keywords

Navigation