Skip to main content

Advertisement

Log in

Morphometric analysis of nuclear shape irregularity as a novel predictor of programmed death-ligand 1 expression in lung squamous cell carcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Immune checkpoint inhibitor (ICI) therapy has been established as one of the key treatment strategies for lung squamous cell carcinoma (LUSQ). The status of programmed death-ligand 1 (PD-L1) in tumor cells and/or immune cells using immunohistochemistry has been primarily used as a surrogate marker for determining ICI treatment; however, when the tissues to be examined are small, false-negative results could be unavoidable due to the heterogeneity of PD-L1 immunoreactivity. To overcome this practical limitation, we attempted to explore the status of nuclear atypia evaluated using morphometry as a potential predictor of PD-L1 status in LUSQ. We correlated the parameters related to nuclear atypia with PD-L1 status using two different cohorts of LUSQ patients (95 cases from The Cancer Genome Atlas database and 30 cases from the Miyagi Cancer Center). Furthermore, we studied the gene mutation status to elucidate the genetic profile of PD-L1 predictable cases. The results revealed that nuclear atypia, especially morphometric parameters related to nuclear shape irregularity, including aspect ratio, circularity, roundness, and solidity, were all significantly associated with PD-L1 status. Additionally, LUSQ cases with high PD-L1 expression and pronounced nuclear atypia were significantly associated with C10orf71 and COL14A1 mutations compared with those with low PD-L1 expression and mild nuclear atypia. We demonstrated for the first time that nuclear shape irregularity could represent a novel predictor of PD-L1 expression in LUSQ. Including the morphometric parameters related to nuclear atypia in conjunction with PD-L1 status could help determine an effective ICI therapeutic strategy; however, further investigation is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Adib E, Nassar AH, Abou Alaiwi S, Groha S, Akl EW, Sholl LM, Michael KS, Awad MM, Jnne PA, Gusev A, Kwiatkowski DJ (2022) Variation in targetable genomic alterations in non-small cell lung cancer by genetic ancestry, sex, smoking history, and histology. Genome Med 14:39. https://doi.org/10.1186/s13073-022-01041-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tan AC, Tan DSW (2022) Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol 40:611–625. https://doi.org/10.1200/JCO.21.01626

    Article  CAS  PubMed  Google Scholar 

  3. Santos ES, Rodriguez E (2022) Treatment considerations for patients with advanced squamous cell carcinoma of the lung. Clin Lung Cancer 23:457–466. https://doi.org/10.1016/j.cllc.2022.06.002

    Article  PubMed  Google Scholar 

  4. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550. https://doi.org/10.1016/S0140-6736(15)01281-7

    Article  CAS  PubMed  Google Scholar 

  5. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, Cheng SY, Bischoff HG, Peled N, Grossi F, Jennens RR, Reck M, Hui R, Garon EB, Boyer M et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378:2078–2092. https://doi.org/10.1056/NEJMoa1801005

    Article  CAS  PubMed  Google Scholar 

  6. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gumus M, Mazieres J, Hermes B, Cay Senler F, Csoszi T, Fulop A, Rodriguez-Cid J, Wilson J, Sugawara S, Kato T, Lee KH, Cheng Y, Novello S, Halmos B, Li X et al (2018) Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 379:2040–2051. https://doi.org/10.1056/NEJMoa1810865

    Article  CAS  PubMed  Google Scholar 

  7. Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Calio A, Cuppone F, Sperduti I, Giannarelli D, Chilosi M, Bronte V, Scarpa A, Bria E, Tortora G (2015) Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One 10:e0130142. https://doi.org/10.1371/journal.pone.0130142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bassanelli M, Sioletic S, Martini M, Giacinti S, Viterbo A, Staddon A, Liberati F, Ceribelli A (2018) Heterogeneity of PD-L1 expression and relationship with biology of NSCLC. Anticancer Res 38:3789–3796. https://doi.org/10.21873/anticanres.12662

    Article  CAS  PubMed  Google Scholar 

  9. McLaughlin J, Han G, Schalper KA, Carvajal-Hausdorf D, Pelekanou V, Rehman J, Velcheti V, Herbst R, LoRusso P, Rimm DL (2016) Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol 2:46–54. https://doi.org/10.1001/jamaoncol.2015.3638

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nan Z, Guoqing W, Xiaoxu Y, Yin M, Xin H, Xue L, Rong W (2021) The predictive efficacy of tumor mutation burden (TMB) on nonsmall cell lung cancer treated by immune checkpoint inhibitors: a systematic review and meta-analysis. Biomed Res Int 2021:1780860. https://doi.org/10.1155/2021/1780860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Teng MW, Ngiow SF, Ribas A, Smyth MJ (2015) Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res 75:2139–2145. https://doi.org/10.1158/0008-5472.CAN-15-0255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550. https://doi.org/10.1038/s41591-018-0014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saito R, Miki Y, Abe T, Miyauchi E, Abe J, Nanamiya R, Inoue C, Sato I, Sasano H (2020) 11beta hydroxysteroid dehydrogenase 1: a new marker for predicting response to immune-checkpoint blockade therapy in non-small-cell lung carcinoma. Br J Cancer 123:61–71. https://doi.org/10.1038/s41416-020-0837-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ko YS, Pyo JS (2019) Clinicopathological significance and prognostic role of tumor-infiltrating lymphocytes in colorectal cancer. Int J Biol Markers 34:132–138. https://doi.org/10.1177/1724600818817320

    Article  CAS  PubMed  Google Scholar 

  15. Lanzel EA, Paula Gomez Hernandez M, Bates AM, Treinen CN, Starman EE, Fischer CL, Parashar D, Guthmiller JM, Johnson GK, Abbasi T, Vali S, Brogden KA (2016) Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models. Cancer Immunol Immunother 65:1511–1522. https://doi.org/10.1007/s00262-016-1907-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoon N, Kim J, Maeng LS, Ahn JH, Park ES (2018) Prominent nucleoli and non-glandular feature are independent predictors of PD-L1 expression in lung adenocarcinoma. Anticancer Res 38:6003–6008. https://doi.org/10.21873/anticanres.12949

    Article  CAS  PubMed  Google Scholar 

  17. Driver BR, Miller RA, Miller T, Deavers M, Gorman B, Mody D, Ge Y, Barrios R, Bernicker E, Kim M, Cagle PT (2017) Programmed Death Ligand-1 (PD-L1) Expression in either tumor cells or tumor-infiltrating immune cells correlates with solid and high-grade lung adenocarcinomas. Arch Pathol Lab Med 141:1529–1532. https://doi.org/10.5858/arpa.2017-0028-OA

    Article  CAS  PubMed  Google Scholar 

  18. Nozawa RS, Yamamoto T, Takahashi M, Tachiwana H, Maruyama R, Hirota T, Saitoh N (2020) Nuclear microenvironment in cancer: control through liquid-liquid phase separation. Cancer Sci 111:3155–3163. https://doi.org/10.1111/cas.14551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, Nuryadi E, Sekine R, Oike T, Kakoti S, Yoshimoto Y, Held KD, Suzuki Y, Kono K, Miyagawa K, Nakano T, Shibata A (2017) DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 8:1751. https://doi.org/10.1038/s41467-017-01883-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kciuk M, Kolat D, Kaluzinska-Kolat Z, Gawrysiak M, Drozda R, Celik I, Kontek R (2023) PD-1/PD-L1 and DNA damage response in cancer. cells 12:530. https://doi.org/10.3390/cells12040530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Delahunt B, Cheville JC, Martignoni G, Humphrey PA, Magi-Galluzzi C, McKenney J, Egevad L, Algaba F, Moch H, Grignon DJ, Montironi R (2013) The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol 37:1490–1504. https://doi.org/10.1097/PAS.0b013e318299f0fb

    Article  PubMed  Google Scholar 

  22. Tsuda H, Akiyama F, Kurosumi M, Sakamoto G, Watanabe T (1998) Establishment of histological criteria for high-risk node-negative breast carcinoma for a multi-institutional randomized clinical trial of adjuvant therapy. Japan National Surgical Adjuvant Study of Breast Cancer (NSAS-BC) Pathology Section. Jpn J Clin Oncol 28:486–491. https://doi.org/10.1093/jjco/28.8.486

    Article  CAS  PubMed  Google Scholar 

  23. Mori M, Chiba R, Takahashi T (1993) Atypical adenomatous hyperplasia of the lung and its differentiation from adenocarcinoma. Characterization of atypical cells by morphometry and multivariate cluster analysis. Cancer 72:2331–2340. https://doi.org/10.1002/1097-0142(19931015)72:8<2331::aid-cncr2820720808>3.0.co;2-e

    Article  CAS  PubMed  Google Scholar 

  24. McKenna AM, Pintilie M, Youngson B, Done SJ (2007) Quantification of the morphologic features of fibroepithelial tumors of the breast. Arch Pathol Lab Med 131:1568–1573. https://doi.org/10.5858/2007-131-1568-QOTMFO

    Article  PubMed  Google Scholar 

  25. Poropatich K, Yang JC, Goyal R, Parini V, Yang XJ (2016) Nuclear size measurement for distinguishing urothelial carcinomas from reactive urothelium on tissue sections. Diagn Pathol 11:57. https://doi.org/10.1186/s13000-016-0501-7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kern AJM, Schlomer BJ, Timberlake MD, Peters CA, Hammer MR, Jacobs MA (2017) Simple visual review of pre- to post-operative renal ultrasound images predicts pyeloplasty success equally as well as geometric measurements: a blinded comparison with a gold standard. J Pediatr Urol 13:401 e401–401 e407. https://doi.org/10.1016/j.jpurol.2017.04.005

    Article  Google Scholar 

  27. Schmid M, Vetterli M, Wegener K (2019) Polymer powders for laser-sintering: powder production and performance qualification .AIP Conference Proceedings, 2065, 1, 020008. AIP Publishing LLC

    Google Scholar 

  28. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, Jenkins RB, Press MF, Spears PA, Vance GH, Viale G, McShane LM, Dowsett M (2018) Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 36:2105–2122. https://doi.org/10.1200/JCO.2018.77.8738

    Article  CAS  PubMed  Google Scholar 

  29. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28:1747–1756. https://doi.org/10.1101/gr.239244.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576. https://doi.org/10.1101/gr.129684.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Minato T, Ito S, Li B, Fujimori H, Mochizuki M, Yamaguchi K, Tamai K, Shimada M, Tokunaga H, Shigeta S, Sato I, Shima H, Yamada H, Yaegashi N, Yasuda J (2021) Liquid biopsy with droplet digital PCR targeted to specific mutations in plasma cell-free tumor DNA can detect ovarian cancer recurrence earlier than CA125. Gynecol Oncol Rep 38:100847. https://doi.org/10.1016/j.gore.2021.100847

    Article  PubMed  PubMed Central  Google Scholar 

  33. Need AC, Shashi V, Hitomi Y, Schoch K, Shianna KV, McDonald MT, Meisler MH, Goldstein DB (2012) Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet 49:353–361. https://doi.org/10.1136/jmedgenet-2012-100819

    Article  CAS  PubMed  Google Scholar 

  34. Onursal C, Dick E, Angelidis I, Schiller HB, Staab-Weijnitz CA (2021) Collagen biosynthesis, processing, and maturation in lung ageing. Front Med (Lausanne) 8:593874. https://doi.org/10.3389/fmed.2021.593874

    Article  PubMed  Google Scholar 

  35. Lee H, Jeong SH, Lee H, Kim C, Nam YJ, Kang JY, Song MO, Choi JY, Kim J, Park EK, Baek YW, Lee JH (2022) Analysis of lung cancer-related genetic changes in long-term and low-dose polyhexamethylene guanidine phosphate (PHMG-p) treated human pulmonary alveolar epithelial cells. BMC Pharmacol Toxicol 23:19. https://doi.org/10.1186/s40360-022-00559-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X, Zhou F, Jiang C, Wang Y, Lu Y, Yang F, Wang N, Yang H, Zheng Y, Zhang J (2014) Identification of a DNA methylome profile of esophageal squamous cell carcinoma and potential plasma epigenetic biomarkers for early diagnosis. PLoS One 9:e103162. https://doi.org/10.1371/journal.pone.0103162

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li Z, Gao X, Peng X, May Chen MJ, Li Z, Wei B, Wen X, Wei B, Dong Y, Bu Z, Wu A, Wu Q, Tang L, Li Z, Liu Y, Zhang L, Jia S, Zhang L, Shan F et al (2020) Multi-omics characterization of molecular features of gastric cancer correlated with response to neoadjuvant chemotherapy. Sci Adv 6:eaay4211. https://doi.org/10.1126/sciadv.aay4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gervaso L, Pellicori S, Cella CA, Bagnardi V, Lordick F, Fazio N (2021) Biomarker evaluation in radically resectable locally advanced gastric cancer treated with neoadjuvant chemotherapy: an evidence reappraisal Ther Adv. Med Oncol 13:17588359211029559. https://doi.org/10.1177/17588359211029559

    Article  CAS  Google Scholar 

  39. Yu H, Chen Z, Ballman KV, Watson MA, Govindan R, Lanc I, Beer DG, Bueno R, Chirieac LR, Chui MH, Chen G, Franklin WA, Gandara DR, Genova C, Brovsky KA, Joshi MM, Merrick DT, Richards WG, Rivard CJ et al (2019) Correlation of PD-L1 expression with tumor mutation burden and gene signatures for prognosis in early-stage squamous cell lung carcinoma. J Thorac Oncol 14:25–36. https://doi.org/10.1016/j.jtho.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  40. Kalukula Y, Stephens AD, Lammerding J, Gabriele S (2022) Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 23:583–602. https://doi.org/10.1038/s41580-022-00480-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brody R, Zhang Y, Ballas M, Siddiqui MK, Gupta P, Barker C, Midha A, Walker J (2017) PD-L1 expression in advanced NSCLC: insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer 112:200–215. https://doi.org/10.1016/j.lungcan.2017.08.005

    Article  PubMed  Google Scholar 

  42. Wang A, Wang HY, Liu Y, Zhao MC, Zhang HJ, Lu ZY, Fang YC, Chen XF, Liu GT (2015) The prognostic value of PD-L1 expression for non-small cell lung cancer patients: a meta-analysis. Eur J Surg Oncol 41:450–456. https://doi.org/10.1016/j.ejso.2015.01.020

    Article  CAS  PubMed  Google Scholar 

  43. Larroquette M, Domblides C, Lefort F, Lasserre M, Quivy A, Sionneau B, Bertolaso P, Gross-Goupil M, Ravaud A, Daste A (2021) Combining immune checkpoint inhibitors with chemotherapy in advanced solid tumours: a review. Eur J Cancer 158:47–62. https://doi.org/10.1016/j.ejca.2021.09.013

    Article  CAS  PubMed  Google Scholar 

  44. Jotte R, Cappuzzo F, Vynnychenko I, Stroyakovskiy D, Rodriguez-Abreu D, Hussein M, Soo R, Conter HJ, Kozuki T, Huang KC, Graupner V, Sun SW, Hoang T, Jessop H, McCleland M, Ballinger M, Sandler A, Socinski MA (2020) Atezolizumab in combination with carboplatin and nab-paclitaxel in advanced squamous NSCLC (IMpower131): results from a randomized phase III trial. J Thorac Oncol 15:1351–1360. https://doi.org/10.1016/j.jtho.2020.03.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the staff of the Department Pathology, Miyagi Cancer Center, for their technical support for the immunohistochemistry.

Funding

This work was supported by the JSPS KAKENHI Grant Numbers JP20 K07387.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed significantly to the content of the manuscript. RS-K conceived and designed the study, and drafted the manuscript; KT, JY, and YO performed the gene mutation analysis and assisted the interpretation of the results; YY assisted the genetic experiments; CI and YM assisted the interpretation of the results; JA, HO, and IS participated in collection of clinical and histological data; JY and HS supervised all experiments and edited the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ryoko Saito-Koyama.

Ethics declarations

Ethics approval and consent to participate

The experiment reported here was conducted in agreement with the Declaration of Helsinki, and was approved by the Ethics Committee of Tohoku University (Miyagi, Japan) and that of Miyagi Cancer Center (Miyagi, Japan). Requirement of informed consent was waived.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

Table S1. A result of mutation analysis of cohort 1 by MuTect variant calling. (DOCX 28 kb)

ESM 2:

Table S2. A result of mutation analysis of cohort 1 by VarScan variant calling. (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito-Koyama, R., Tamai, K., Yasuda, J. et al. Morphometric analysis of nuclear shape irregularity as a novel predictor of programmed death-ligand 1 expression in lung squamous cell carcinoma. Virchows Arch 484, 609–620 (2024). https://doi.org/10.1007/s00428-023-03548-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-023-03548-z

Keywords

Navigation