Skip to main content

Advertisement

Log in

Fungal diversity in a sediment core from climate change impacted Boeckella Lake, Hope Bay, north-eastern Antarctic Peninsula assessed using metabarcoding

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We studied the fungal DNA present in a lake sediment core obtained from Trinity Peninsula, Hope Bay, north-eastern Antarctic Peninsula, using metabarcoding through high-throughput sequencing (HTS). Sequences obtained were assigned to 146 amplicon sequence variants (ASVs) primarily representing unknown fungi, followed by the phyla Ascomycota, Rozellomycota, Basidiomycota, Chytridiomycota and Mortierellomycota. The most abundant taxa were assigned to Fungal sp., Pseudeurotium hygrophilum, Rozellomycota sp. 1, Pseudeurotiaceae sp. 1 and Chytridiomycota sp. 1. The majority of the DNA reads, representing 40 ASVs, could only be assigned at higher taxonomic levels and may represent taxa not currently included in the sequence databases consulted and/or be previously undescribed fungi. Different sections of the core were characterized by high sequence diversity, richness and moderate ecological dominance indices. The assigned diversity was dominated by cosmopolitan cold-adapted fungi, including known saprotrophic, plant and animal pathogenic and symbiotic taxa. Despite the overall dominance of Ascomycota and Basidiomycota and psychrophilic Mortierellomycota, members of the cryptic phyla Rozellomycota and Chytridiomycota were also detected in abundance. As Boeckella Lake may cease to exist in approaching decades due the effects of local climatic changes, it also an important location for the study of the impacts of these changes on Antarctic microbial diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All raw sequences have been deposited in the NCBI database under the codes SAMN24389534, SAMN24389535 and SAMN24389536.

References

  • Abarenkov K, Allan Z, Timo P et al (2020) UNITE QIIME release for eukaryotes. Version 04.02.2020. UNITE Community. https://doi.org/10.15156/BIO/786386

    Article  Google Scholar 

  • Arenz BE, Blanchette RA (2009) Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol 55:46–56

    Article  CAS  PubMed  Google Scholar 

  • Bardou P, Mariette J, Escudié F et al (2014) An interactive Venn diagram viewer. BMC Bioinform 15:293

    Article  Google Scholar 

  • Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borruso L, Sannino C, Selbmann L et al (2018) A thin ice layer segregates two distinct fungal communities in Antarctic brines from Tarn Flat (Northern Victoria Land). Sci Rep 8:6582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brunati M, Rojas JL, Sponga F et al (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2:43–50

    Article  PubMed  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro M, Chaparro M, Córdoba F et al (2017) Sedimentary analysis and magnetic properties of Lake Anónima, Vega Island. Antarct Sci 29:429–444

    Article  Google Scholar 

  • Chen S, Yao H, Han J et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connell L, Staudigel H (2013) Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biology 2:798–809

    Article  PubMed  PubMed Central  Google Scholar 

  • de Menezes GCA, Câmara PEAS, Pinto OHB et al (2021) Fungal diversity present on rocks from a polar desert in continental Antarctica assessed using DNA metabarcoding. Extremophiles 25:193–202

    Article  PubMed  CAS  Google Scholar 

  • de Souza LMD, Ogaki MB, Câmara PEAS et al (2021) Assessment of fungal diversity present in lakes of Maritime Antarctica using DNA metabarcoding: a temporal microcosm experiment. Extremophiles 25:77–84

    Article  PubMed  CAS  Google Scholar 

  • Deiner K, Bik HM, Mächler E et al (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26:5872–5895

    Article  PubMed  Google Scholar 

  • Ellis-Evans JC (1985) Fungi from maritime Antarctic freshwater environments. Brit Antartic Surv B 68:37–45

    Google Scholar 

  • Ellis-Evans JC (1996) Microbial diversity and function in Antarctic freshwater ecosystems. Biodivers Conserv 5:1395–1431

    Article  Google Scholar 

  • Emslie SD, McKenzie A, Marti LJ et al (2017) Recent occupation by Adelie Penguins (Pygoscelis adeliae) at Hope Bay and Seymour Island and the ‘northern enigma’ in the Antarctic Peninsula. Polar Biol 41:71–77

    Article  Google Scholar 

  • Ermolin E (2003) Primera experiência em diseño y construcción de undique en permafrost Antártico: Lago Boeckella, Bahía Esperanza. Contrib Inst Antar Argentino 537:1–41

    Google Scholar 

  • Giner CR, Forn I, Romac S et al (2016) Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl Environ Microbiol 82:4757–4766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves VN, Vaz AB, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471

    Article  PubMed  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Henríquez M, Vergara K, Norambuena J et al (2014) Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial antitumoral and antioxidant potential. World J Microbiol Biotechnol 30:65–76

    Article  PubMed  CAS  Google Scholar 

  • Hering D, Borja A, Jones JI et al (2018) Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res 138:192–205

    Article  CAS  PubMed  Google Scholar 

  • Izaguirre I, Pizarro H, Allende L et al (2012) Responses of a Maritime Antarctic lake to a catastrophic draining event under a climate change scenario. Polar Biol 35:231–239

    Article  Google Scholar 

  • Joshi NA, Fass JN (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle

  • Kagami M, Miki T, Takimoto G (2014) Mycoloop: chytrids in aquatic food webs. Front Microbiol 5:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2011) Dictionary of the fungi, 10th edn. CAB International, Wallingford, p 784

    Google Scholar 

  • Kochkina GA, Ozerskaya SM, Ivanushkina NE et al (2014) Fungal diversity in the Antarctic active layer. Microbiology (moscow) 83:94–101

    Article  CAS  Google Scholar 

  • Kochkina GA, Ivanushkina NE, Lupachev AV et al (2018) Diversity of mycelial fungi in natural and human-afected Antarctic soils. Polar Biol 42:47–64

    Article  Google Scholar 

  • Kujala K, Mikkonen A, Saravesi K, Ronkanen AK, Tiirola M (2018) Microbial diversity along a gradient in peatlandstreating miningafected Waters. FEMS Microbiol Ecol 94:1–15

    Article  CAS  Google Scholar 

  • Laybourn-Parry J, Pearce DA (2007) The biodiversity and ecology of Antarctic lakes: models for evolution. Philos Trans R Soc Lond B Biol Sci 362:2273–2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letcher PM, Powell MJ (2018) A taxonomic summary and revision of Rozella (Cryptomycota). IMA Fungus 9:383–399

    Article  PubMed  PubMed Central  Google Scholar 

  • Medinger R, Nolte V, Pandey RV, Jost S (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 117:638–649

    Article  PubMed  Google Scholar 

  • Nguyen NH, Song Z, Bates ST et al (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  • Nozal F, Montes M, Martín-Serrano A, Del Valle R (2014) Evolución glaciar en el entorno de Bahía Esperanza (Península Antártica) durate el Holoceno. XIX Congreso Geológico Argentino, Junio, Córdoba

  • Ogaki MB, Vieira R, Lírio JM et al (2019) Diversity and ecology of fungal assemblages present in lakes of Antarctica. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer Nature, Switzerland, pp 69–97

    Chapter  Google Scholar 

  • Ogaki MB, Teixeira DR, Vieira R et al (2020a) Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Fungal Biol 124:601–611

    Article  CAS  PubMed  Google Scholar 

  • Ogaki MB, Vieira R, Muniz MC et al (2020b) Diversity, ecology, and bioprospecting of culturable fungi in lakes impacted by anthropogenic activities in Maritime Antarctica. Extremophiles 24:637–655

    Article  CAS  PubMed  Google Scholar 

  • Ogaki MB, Câmara PEAS, Pinto OHB et al (2021) Diversity of fungal DNA in lake sediments on Vega Island, north-east Antarctic Peninsula assessed using DNA metabarcoding. Extremophiles 25:257–265

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R et al (2012) Community Ecology Package. R package version 2.0-5. Available: http://cran.r-project.org/web/packages/vegan/index.html

  • Píšková A, Roman M, Bulínová M et al (2019) Late-Holocene palaeoenvironmental changes at Lake Esmeralda (Vega Island, Antarctic Peninsula) based on a multi-proxy analysis of laminated lake sediment. Holocene 29:1155–1175

    Article  Google Scholar 

  • Pizarro H, Vinocur A, Tell G (2002) Periphyton on artificial substrata from three lakes of different trophic status at Hope Bay (Antarctica). Polar Biology 25(3):169–179. https://doi.org/10.1007/s003000100323

    Article  Google Scholar 

  • Quesada A, Camacho A, Rochera C, Velázquez D (2009) Byers Peninsula: a reference site for coastal, terrestrial land limnetic ecosystem studies in maritime Antarctica. Polar Scie 3:181–187

    Article  Google Scholar 

  • Richardson RT, Lin CH et al (2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Scie 3:1400066

    Article  Google Scholar 

  • Rojas-Jimenez K, Wurzbacher C, Bourne EC et al (2017) Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Sci Rep 7:15348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosa LH, Zani CL, Cantrell CL et al (2019) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, Switzerland, pp 1–18

    Chapter  Google Scholar 

  • Rosa LH, da Silva TH, Ogaki MB et al (2020a) DNA metabarcoding high-throughput sequencing uncovers cryptic fungal diversity in soils of protected and non-protected areas on Deception Island, Antarctica. Sci Rep 10:21986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa LH, Pinto OHB, Convey P et al (2020b) DNA metabarcoding to assess the diversity of airborne fungi present in air over Keller Peninsula, King George Island, Antarctica. Microb Ecol 82:165–172

    Article  PubMed  CAS  Google Scholar 

  • Rosa LH, Pinto OHB, Šantl-Temkiv T et al (2020c) DNA metabarcoding high-throughput sequencing of fungal diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica. Sci Rep 10:21793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeber PA, von Hippel B, Kauserud H, Löber U, Stoof-Leichsenring KR, Herzschuh U, Epp LS (2021) Fungal biodiversity in Arctic paleoecosystems assessed by metabarcoding of lake sedimentary ancient DNA. bioRxiv 462738

  • Sogonov MV, Schroers HJ, Gams W, Dijksterhuis S (2005) The hyphomycete Teberdinia hygrophila gen. nov. sp. Nov. and related anamorphs of Pseudeurotium species. Mycologia 97:695709

    Article  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Kõljalg U et al (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Div 90:135–159

    Article  Google Scholar 

  • Vaz ABM, Rosa LH, Vieira MLA et al (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarc Sci 12:374–385

    Article  Google Scholar 

  • Weber AA, Pawlowski J (2013) Can abundance of protists be inferred from sequence data: a case study of Foraminifera. PLoS ONE 8:e56739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, pp 315–322

    Google Scholar 

  • Zale R (1994a) 14C Age corrections in Antarctic lake sediments inferred from Geochemistry. Radiocarbon 36:173–185

    Article  CAS  Google Scholar 

  • Zale R (1994b) Changes in size of the Hope Bay Adelie penguin rookery as inferred from Lake Boeckella sediment. Ecography 17:297–304

    Article  Google Scholar 

  • Zale R, Karlen W (1989) Lake sediment cores from the Antarctic Peninsula and surrounding islands. Geogr Ann 71(3–4):211–220

    Article  Google Scholar 

Download references

Acknowledgements

This study received financial support from CNPq, CAPES, FNDCT, FAPEMIG, INCT Criosfera, PROANTAR. P. Convey is supported by NERC core funding to the British Antarctic Survey’s ‘Biodiversity, Evolution and Adaptation’ Team. We thank the Instituto Antártico Argentino for logistical and financial support for the field campaigns in Antarctica during summers 2018 and 2019, Marie Bulinova and Patricia Ader for their help in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Rosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The collections and studies performed in Antarctic Peninsula were authorized by the Secretariat of the Antarctic Treaty and by PROANTAR.

Additional information

Communicated by A. Oren.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, L.H., Ogaki, M.B., Lirio, J.M. et al. Fungal diversity in a sediment core from climate change impacted Boeckella Lake, Hope Bay, north-eastern Antarctic Peninsula assessed using metabarcoding. Extremophiles 26, 16 (2022). https://doi.org/10.1007/s00792-022-01264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00792-022-01264-1

Keywords

Navigation