Adeleke R, Cloete E, Khasa D (2010) Isolation and identification of iron ore-solubilising fungus. S Afr J Sci 106:1–6. https://doi.org/10.4102/sajs.v106i9/10.254
CAS
Article
Google Scholar
Ambreen N, Bhatti HN, Bhatti TM (2002) Bioleaching of bauxite by Penicillium simplicissimum. J Biol Sci 2:793–796. https://doi.org/10.3923/jbs.2002.793.796
Article
Google Scholar
Amin MM, Elaassy IE, El-Feky MG, Sallam ASM, Talaat MS, Kawady NA (2014) Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt. J Environ Radioact 134:76–82. https://doi.org/10.1016/j.jenvrad.2014.02.024
CAS
Article
PubMed
Google Scholar
Anand M, Crawford IA, Balat-Pichelin M, Abanades S, Van Westrenen W, Péraudeau G et al (2012) A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planet Space Sci 74:42–48. https://doi.org/10.1016/j.pss.2012.08.012
CAS
Article
Google Scholar
Arai T, Takeda H, Yamaguchi A, Ohtake M (2008) A new model of lunar crust: asymmetry in crustal composition and evolution. Earth Planets Sp 60:433–444. https://doi.org/10.1186/BF03352808
Article
Google Scholar
Asghari I, Mousavi SM, Amiri F, Tavassoli S (2013) Bioleaching of spent refinery catalysts: a review. J Ind Eng Chem 19:1069–1081. https://doi.org/10.1016/j.jiec.2012.12.005
CAS
Article
Google Scholar
Ash RL, Dowler WL, Varsi G (1978) Feasibility of rocket propellant production on Mars. Acta Astronaut 5:705–724
CAS
Article
Google Scholar
Averesch NJH (2021) Choice of microbial system for in-situ resource utilization on mars. Front Astron Sp Sci 8:1–7. https://doi.org/10.3389/fspas.2021.700370
Article
Google Scholar
Barnett MJ, Palumbo-Roe B, Gregory SP (2018) Comparison of heterotrophic bioleaching and ammonium sulfate ion exchange leaching of rare earth elements from a Madagascan ion-adsorption clay. Minerals 8:1–11. https://doi.org/10.3390/min8060236
CAS
Article
Google Scholar
Baumstark-Khan C, Facius R (2002) Life under conditions of ionizing radiation. Astrobiology—the quest for the conditions of life. Springer, Berlin, pp 261–284
Google Scholar
Bellenberg S, Díaz M, Noël N, Sand W, Poetsch A, Guiliani N et al (2014) Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces. Res Microbiol 165:773–781. https://doi.org/10.1016/j.resmic.2014.08.006
CAS
Article
PubMed
Google Scholar
Berliner AJ, Hilzinger JM, Abel AJ, McNulty MJ, Makrygiorgos G, Averesch NJH et al (2021) Towards a biomanufactory on mars. Front Astron Sp Sci 8:1–14. https://doi.org/10.3389/fspas.2021.711550
Article
Google Scholar
Billi D, Mosca C, Fagliarone C, Napoli A, Verseux C, Baqué M et al (2019) Exposure to low Earth orbit of an extreme-tolerant cyanobacterium as a contribution to lunar astrobiology activities. Int J Astrobiol. https://doi.org/10.1017/S1473550419000168
Article
Google Scholar
Billi D, Gallego Fernandez B, Fagliarone C, Chiavarini S, Rothschild LJ (2021) Exploiting a perchlorate-tolerant desert cyanobacterium to support bacterial growth for in situ resource utilization on Mars. Int J Astrobiol 20:29–35. https://doi.org/10.1017/S1473550420000300
CAS
Article
Google Scholar
Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The geochemistry of acid mine drainage. In: Treatise on geochemistry, pp 149–204. doi:https://doi.org/10.1016/B0-08-043751-6/09137-4.
Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604. https://doi.org/10.1016/S0168-6445(97)00036-3
CAS
Article
Google Scholar
Brandl H, Bosshard R, Wegmann M (1999) Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Process Metall 9:569–576. https://doi.org/10.1016/S1572-4409(99)80146-1
Article
Google Scholar
Brisson VL, Zhuang WQ, Alvarez-Cohen L (2016) Bioleaching of rare earth elements from monazite sand. Biotechnol Bioeng 113:339–348. https://doi.org/10.1002/bit.25823
CAS
Article
PubMed
Google Scholar
Brisson VL, Zhuang WQ, Alvarez-Cohen L (2020) Metabolomic analysis reveals contributions of citric and citramalic acids to rare earth bioleaching by a Paecilomyces fungus. Front Microbiol 10:1–12. https://doi.org/10.3389/fmicb.2019.03008
Article
Google Scholar
Brounce M, Boyce J, McCubbin FM, Humphreys J, Reppart J, Stolper E et al (2019) The oxidation state of sulfur in lunar apatite. Am Mineral 104:307–312. https://doi.org/10.2138/am-2019-6804
Article
Google Scholar
Brounce M, Boyce JW, Barnes J, McCubbin FM (2020) Sulfur in the apollo lunar basalts and implications for future sample-return missions. Elements 16:361–362. https://doi.org/10.2138/GSELEMENTS.16.5.361
Article
Google Scholar
Brown II, Garrison DH, Jones JA, Allen CC, Sanders G, Sarkisova SA et al (2008) The development and perspectives of Bio-ISRU. In: Joint Annual Meeting of LEAG-ICEUM-SRR.
Brune KD, Bayer TS (2012) Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 3:1–6. https://doi.org/10.3389/fmicb.2012.00203
Article
Google Scholar
Bryan CG, Watkin EL, McCredden TJ, Wong ZR, Harrison STL, Kaksonen AH (2015) The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometallurgy 152:33–43. https://doi.org/10.1016/j.hydromet.2014.12.004
CAS
Article
Google Scholar
Buetti-Dinh A, Herold M, Christel S, Hajjami ME, Bellenberg S, Ilie O et al (2020) Systems biology of acidophile biofilms for efficient metal extraction. Sci Data 7:1–10. https://doi.org/10.1038/s41597-020-0519-2
CAS
Article
Google Scholar
Byloos B, Coninx I, Van Hoey O, Cockell C, Nicholson N, Ilyin V et al (2017) The impact of space flight on survival and interaction of Cupriavidus metallidurans CH34 with basalt, a volcanic moon analog rock. Front Microbiol 8:1–14. https://doi.org/10.3389/fmicb.2017.00671
Article
Google Scholar
Campins H, Hargrove K, Pinilla-Alonso N, Howell ES, Kelley MS, Licandro J et al (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature 464:1320–1321. https://doi.org/10.1038/nature09029
CAS
Article
PubMed
Google Scholar
Carter JL (1992) Lunar material resources: an overview. In: Space resources: materials 19–49.
Castelein SM, Aarts TF, Schleppi J, Hendrikx R, Böttger AJ, Benz D et al (2021) Iron can be microbially extracted from Lunar and Martian regolith simulants and 3D printed into tough structural materials. PLoS ONE 16:1–21. https://doi.org/10.1101/2020.11.15.382614
Article
Google Scholar
Cecal A, Humelnicu D, Popa K, Rudic V, Gulea A, Palamaru I et al (2000) Bioleaching of UO22+ ions from poor uranium ores by means of cyanobacteria. J Radioanal Nucl Chem 245:427–429. https://doi.org/10.1023/A:1006707815553
CAS
Article
Google Scholar
Chen W (2012) The study of bioremediation on heavy metal of cultured seawater by Sphingomonas sp. XJ2 immobilized Sphingomonas strain. Adv Mater Res 347–353:1436–1441. https://doi.org/10.4028/www.scientific.net/AMR.347-353.1436
CAS
Article
Google Scholar
Clark BC (1993) Geochemical components in Martian soil. Geochim Cosmochim Acta 57:4575–4581. https://doi.org/10.1016/0016-7037(93)90183-W
CAS
Article
Google Scholar
Cockell CS (2010) Geomicrobiology beyond Earth: Microbe-mineral interactions in space exploration and settlement. Trends Microbiol 18:308–314. https://doi.org/10.1016/j.tim.2010.03.005
CAS
Article
PubMed
Google Scholar
Cockell CS (2011) Synthetic geomicrobiology: engineering microbe–mineral interactions for space exploration and settlement. Int J Astrobiol 10:315–324. https://doi.org/10.1017/S1473550411000164
CAS
Article
Google Scholar
Cockell CS (2021) Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microb Biotechnol 00:1–13. https://doi.org/10.1111/1751-7915.13927
Article
Google Scholar
Cockell CS, Santomartino R (2021) Mining and microbiology for the solar system silicate and basalt economy. In: Hessel V, Stoudemire J, Miyamoto H, Fisk ID (eds) Space manufacturing resources: earth and planetary exploration applications. Wiley, Hoboken
Google Scholar
Cockell CS, Schuerger AC, Billi D, Friedmann EI, Panitz C (2005) Effects of a simulated martian UV flux on the Cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology. https://doi.org/10.1089/ast.2005.5.127
Article
PubMed
Google Scholar
Cockell CS, Santomartino R, Finster K, Waajen AC, Eades LJ, Moeller R et al (2020) Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat Commun 11:1–12. https://doi.org/10.1038/s41467-020-19276-w
CAS
Article
Google Scholar
Cockell CS, Santomartino R, Finster KW, Waajen AC, Loudon C-M, Eades LJ et al (2021) Microbially-enhanced vanadium mining and bioremediation under micro- and mars gravity on the international space station. Front Microbiol 12:663. https://doi.org/10.3389/fmicb.2021.641387
Article
Google Scholar
Coker JA (2016) Extremophiles and biotechnology: Current uses and prospects. F1000Research 5:1–7. https://doi.org/10.12688/f1000research.7432.1
CAS
Article
Google Scholar
Coradini A, Capaccioni F, Erard S, Arnold G, De Sanctis MC, Filacchione G et al (2011) The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS. Science 334:492–494. https://doi.org/10.1126/science.1204062
CAS
Article
PubMed
Google Scholar
Cortesão M, de Haas A, Unterbusch R, Fujimori A, Schütze T, Meyer V et al (2020) Aspergillus niger spores are highly resistant to space radiation. Front Microbiol 11:1–12. https://doi.org/10.3389/fmicb.2020.00560
Article
Google Scholar
Daly MJ (2000) Engineering radiation-resistant bacteria for environmental biotechnology. Curr Opin Biotechnol 11:280–285. https://doi.org/10.1016/S0958-1669(00)00096-3
CAS
Article
PubMed
Google Scholar
De Sanctis MC, Ammannito E, McSween HY, Raponi A, Marchi S, Capaccioni F et al (2017) Localized aliphatic organic material on the surface of Ceres. Science 355:719–722. https://doi.org/10.1126/science.aaj2305
CAS
Article
PubMed
Google Scholar
Díaz-Rullo J, Rodríguez-Valdecantos G, Torres-Rojas F, Cid L, Vargas IT, González B et al (2021) Mining for perchlorate resistance genes in microorganisms from sediments of a hypersaline pond in Atacama Desert Chile. Front Microbiol. https://doi.org/10.3389/fmicb.2021.723874
Article
PubMed
PubMed Central
Google Scholar
Din G, Hassan A, Rafiq M, Hasan F, Badshah M, Khan S et al (2020) Characterization of Organic acid producing Aspergillus tubingensis FMS1 and its role in metals leaching from soil. Geomicrobiol J 37:336–344. https://doi.org/10.1080/01490451.2019.1701585
CAS
Article
Google Scholar
Eckart P (1992) Bioregenerative life support concepts. In: Spaceflight life support and biospherics, p 249–364.
Ehlmann BL, Edwards CS (2014) Mineralogy of the Martian surface. Annu Rev Earth Planet Sci 42:291–315. https://doi.org/10.1146/annurev-earth-060313-055024
CAS
Article
Google Scholar
Eichler A, Hadland N, Pickett D, Masaitis D, Handy D, Perez A et al (2021) Challenging the agricultural viability of Martian regolith simulants. Icarus 354:114022. https://doi.org/10.1016/j.icarus.2020.114022
Article
Google Scholar
El Fadli KI, Cerveny RS, Burt CC, Eden P, Parker D, Brunet M et al (2013) World meteorological organization assessment of the purported world record 58 °C temperature extreme at el Azizia, Libya (13 September 1922). Bull Am Meteorol Soc 94:199–204. https://doi.org/10.1175/BAMS-D-12-00093.1
Article
Google Scholar
Fahrion J, Mastroleo F, Dussap CG, Leys N (2021) Use of photobioreactors in regenerative life support systems for human space exploration. Front Microbiol 12:1–14. https://doi.org/10.3389/fmicb.2021.699525
Article
Google Scholar
Faraji F, Golmohammadzadeh R, Rashchi F, Alimardani N (2018) Fungal bioleaching of WPCBs using Aspergillus niger: observation, optimization and kinetics. J Environ Manag 217:775–787. https://doi.org/10.1016/j.jenvman.2018.04.043
CAS
Article
Google Scholar
Franz A, Burgstaller W, Schinner F (1991) Leaching with Penicillium simplicissimum: influence of metals and buffers on proton extrusion and citric acid production. Appl Environ Microbiol 57:769–774
CAS
Article
PubMed
PubMed Central
Google Scholar
Franz HB, Trainer MG, Malespin CA, Mahaffy PR, Atreya SK, Becker RH et al (2017) Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications. Planet Space Sci 138:44–54. https://doi.org/10.1016/j.pss.2017.01.014
CAS
Article
Google Scholar
Franz HB, King PL, Gaillard F (2019) Sulfur on Mars from the atmosphere to the core. In: Volatiles in the martian crust ed. E. Inc., pp 119–183. doi:https://doi.org/10.1016/B978-0-12-804191-8.00006-4.
Gadd GM (1999) Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes. Elsevier Masson SAS. https://doi.org/10.1016/s0065-2911(08)60165-4
Article
Google Scholar
Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. https://doi.org/10.1099/mic.0.037143-0
CAS
Article
PubMed
Google Scholar
Gaffey MJ (1992) Ground-based observation of near-earth asteroids. In: Space resources: materials 50–58
Gertsch RE (1992) Asteroid mining. In: Space resources: materials 111–120
Giese EC, Carpen HL, Bertolino LC, Schneider CL (2019) Characterization and bioleaching of nickel laterite ore using Bacillus subtilis strain. Biotechnol Prog. https://doi.org/10.1002/btpr.2860
Article
PubMed
Google Scholar
Gnida A (2020) What do we know about the influence of vacuum on bacterial biocenosis used in environmental biotechnologies ? Appl Microbiol Biotechnol 104:101–106. https://doi.org/10.1007/s00253-019-10213-6
CAS
Article
PubMed
Google Scholar
Gòdia F, Albiol J, Montesinos JL, Pérez J, Creus N, Cabello F et al (2002) MELISSA: a loop of interconnected bioreactors to develop life support in Space. J Biotechnol 99:319–330. https://doi.org/10.1016/S0168-1656(02)00222-5
Article
PubMed
Google Scholar
González-Toril E, Martínez-Frías J, Gómez Gómez JM, Rull F, Amils R (2005) Iron meteorites can support the growth of acidophilic chemolithoautotrophic microorganisms. Astrobiology 5:406–414
Article
PubMed
Google Scholar
Greenwood JP, Mojzsis SJ, Coath CD (2000) Sulfur isotopic compositions of individual sulfides in Martian meteorites ALH840001 and Nakhla: implications for crust-regolith exchanges on Mars. Earth Planet Sci Lett 184:23–35. https://doi.org/10.1016/S0012-821X(00)00301-0
CAS
Article
Google Scholar
Gronstal A, Pearson V, Kappler A, Dooris C, Anand M, Poitrasson F et al (2009) Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron-oxidizing bacteria. Meteorit Planet Sci 44:233–247. https://doi.org/10.1111/j.1945-5100.2009.tb00731.x
CAS
Article
Google Scholar
Gumulya Y, Boxall NJ, Khaleque HN, Santala V, Carlson RP, Kaksonen AH (2018) In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes (basel). https://doi.org/10.3390/genes9020116
Article
Google Scholar
Haberle RM (2015) Solar system/sun, atmospheres, evolution of atmospheres: planetary atmospheres: mars. Second edition. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-382225-3.00312-1
Book
Google Scholar
Hallberg KB, Grail BM, Plessis CAD, Johnson DB (2011) Reductive dissolution of ferric iron minerals: a new approach for bio-processing nickel laterites. Miner Eng 24:620–624. https://doi.org/10.1016/j.mineng.2010.09.005
CAS
Article
Google Scholar
Hecht MH, Kounaves SP, Quinn RC, Wesy SJ, Young SMM, Ming DW et al (2009) Detection of perchlorate and the soluble chemistry of martian soil at the phoenix lander site. Science 325:64–67
CAS
Article
PubMed
Google Scholar
Heinz J, Krahn T, Schulze-Makuch D (2020) A new record for microbial perchlorate tolerance: fungal growth in NaClO4 brines and its implications for putative life on Mars. Life 10:4–11. https://doi.org/10.3390/life10050053
CAS
Article
Google Scholar
Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156. https://doi.org/10.1128/MMBR.00016-09
CAS
Article
PubMed
PubMed Central
Google Scholar
Horneck G, Moeller R, Cadet J, Douki T, Mancinelli RL, Nicholson WL et al (2012) Resistance of bacterial endospores to outer space for planetary protection purposes-experiment PROTECT of the EXPOSE-E Mission. Astrobiology 12:445–456. https://doi.org/10.1089/ast.2011.0737
Article
PubMed
PubMed Central
Google Scholar
Hosseini Nasab M, Noaparast M, Abdollahi H, Amoozegar MA (2020) Indirect bioleaching of Co and Ni from iron rich laterite ore, using metabolic carboxylic acids generated by P. putida, P. koreensis, P. bilaji and A. niger. Hydrometallurgy 193:105309. https://doi.org/10.1016/j.hydromet.2020.105309
CAS
Article
Google Scholar
Housen KR, Wilkening LL, Chapman CR, Greenberg R (1979) Asteroidal regoliths. Icarus 39:317–351. https://doi.org/10.1016/0019-1035(79)90145-3
Article
Google Scholar
Huang B, Li DG, Huang Y, Liu CT (2018) Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil Med Res 5:1–14. https://doi.org/10.1186/s40779-018-0162-9
Article
Google Scholar
Huang W, Ertekin E, Wang T, Cruz L, Dailey M, DiRuggiero J et al (2020) Mechanism of water extraction from gypsum rock by desert colonizing microorganisms. Proc Natl Acad Sci 117:10681–10687. https://doi.org/10.1073/pnas.2001613117
CAS
Article
PubMed
PubMed Central
Google Scholar
Hughes DW (1994) The historical unravelling of the diameters of the first four asteroids. Q J R Astron Soc 35:331–344
Google Scholar
ISECG (2013) Benefits stemming from space exploration. ESA Publ. 1–22. http://www.globalspaceexploration.org/wordpress/wp-content/uploads/2013/10/Benefits-Stemming-from-Space-Exploration-2013.pdf.
Jaafar R, Al-Sulami A, Al-Taee A, Aldoghachi F, Napes S (2015) Biosorption and bioaccumulation of some heavy metals by Deinococcus Radiodurans isolated from soil in basra governorate—Iraq. J Biotechnol Biomater. https://doi.org/10.4172/2155-952x.1000190
Article
Google Scholar
Jamanca-Lino G (2021) Space resources engineering: ilmenite deposits for oxygen production on the moon. Am J Min Metall 6:6–11. https://doi.org/10.12691/ajmm-6-1-2
CAS
Article
Google Scholar
Jeong SW, Choi YJ (2020) Extremophilic microorganisms for the treatment of toxic pollutants in the environment. Molecules 25:13–15. https://doi.org/10.3390/molecules25214916
CAS
Article
Google Scholar
Jerez CA (2017a) Biomining of metals: how to access and exploit natural resource sustainably. Microb Biotechnol 10:1191–1193. https://doi.org/10.1111/1751-7915.12792
Article
PubMed
PubMed Central
Google Scholar
Jerez CA (2017b) Metal extraction and biomining, 4th edn. Elsevier Inc, Amsterdam
Google Scholar
Johansson KR (1992) Bioprocessing of ores: application to space resources. In: Space resources: materials, pp 222–241
Johnson DB (2014) Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31. https://doi.org/10.1016/j.copbio.2014.04.008
CAS
Article
PubMed
Google Scholar
Johnson DB (2018) The evolution, current status, and future prospects of using biotechnologies in the mineral extraction and metal recovery sectors. Minerals 8:1–14. https://doi.org/10.3390/min8080343
CAS
Article
Google Scholar
Johnson DB, Roberto FF (1997) Heterotrophic Acidophiles and their roles in the bioleaching of sulfide minerals. Biomining. https://doi.org/10.1007/978-3-662-06111-4_13
Article
Google Scholar
Johnson DB, Grail BM, Hallberg KB (2013) A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores. Minerals 3:49–58. https://doi.org/10.3390/min3010049
CAS
Article
Google Scholar
Jolliff B (2008) Lunar mineralogy and global distribution on the moon’s surface. EPSC Abstr 3:4–5
Google Scholar
Jolliff BL, Gillis JJ, Haskin LA, Korotev RL, Wieczorek MA (2000) Major lunar crustal terranes: Surface expressions and crust-mantle origins. J Geophys Res E Planets 105:4197–4216. https://doi.org/10.1029/1999JE001103
CAS
Article
Google Scholar
Keller RJ, Porter W, Goli K, Rosenthal R, Butler N, Jones JA (2021) Biologically-based and physiochemical life support and in situ resource utilization for exploration of the solar system—reviewing the current state and defining future development needs. Life. https://doi.org/10.3390/life11080844
Article
PubMed
PubMed Central
Google Scholar
Kim W, Tengra FK, Young Z, Shong J, Marchand N, Chan HK et al (2013) Spaceflight Promotes Biofilm Formation by Pseudomonas aeruginosa. PLoS ONE 8:e62437. https://doi.org/10.1371/journal.pone.0062437
CAS
Article
PubMed
PubMed Central
Google Scholar
Klas M, Tsafnat N, Dennerley J, Beckmann S, Osborne B, Dempster AG et al (2015) Biomining and methanogenesis for resource extraction from asteroids. Space Policy 34:18–22. https://doi.org/10.1016/j.spacepol.2015.08.002
Article
Google Scholar
Kölbl D, Pignitter M, Somoza V, Schimak MP, Strbak O, Blazevic A et al (2017) Exploring fingerprints of the extreme thermoacidophile Metallosphaera sedula grown on synthetic martian regolith materials as the sole energy sources. Front Microbiol 8:1–11. https://doi.org/10.3389/fmicb.2017.01918
Article
Google Scholar
Kounaves SP, Chaniotakis NA, Chevrier VF, Carrier BL, Folds KE, Hansen VM et al (2014) Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus 232:226–231. https://doi.org/10.1016/j.icarus.2014.01.016
CAS
Article
Google Scholar
Krasinsky GA, Pitjeva EV, Vasilyev MV, Yagudina EI (2002) Hidden mass in the asteroid belt. Icarus 158:98–105. https://doi.org/10.1006/icar.2002.6837
Article
Google Scholar
Lasseur C, Mergeay M (2021) Current and future ways to closed life support systems: virtual MELiSSA conference, Ghent (B) (3–5/11/2020) a review. Ecol Eng Environ Prot 1:25–35
Google Scholar
Lauretta DS, DellaGiustina DN, Bennett CA, Golish DR, Becker KJ, Balram-Knutson SS et al (2019) The unexpected surface of asteroid (101955) Bennu. Nature 568:55–60. https://doi.org/10.1038/s41586-019-1033-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Lawson SL, Feldman WC, Lawrence DJ, Moore KR, Elphic RC, Belian RD et al (2005) Recent outgassing from the lunar surface: the lunar prospector alpha particle spectrometer. J Geophys Res E Planets 110:1–8. https://doi.org/10.1029/2005JE002433
CAS
Article
Google Scholar
Levicán G, Ugalde JA, Ehrenfeld N, Maass A, Parada P (2008) Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics 9:1–19. https://doi.org/10.1186/1471-2164-9-581
CAS
Article
Google Scholar
Lewicki C, Diamandis P, Anderson E, Voorhees C, Mycroft F (2013) Planetary resources—the asteroid mining company. New Sp 1:105–108. https://doi.org/10.1089/space.2013.0013
Article
Google Scholar
Lewis JS (1992). Asteroid resources. In: Space resources: materials, p 59–78
Linnarsson D, Carpenter J, Fubini B, Gerde P, Karlsson LL, Loftus DJ et al (2012) Toxicity of lunar dust. Planet Space Sci 74:57–71. https://doi.org/10.1016/j.pss.2012.05.023
CAS
Article
Google Scholar
Liu Y, Cockell CS, Wang G, Hu C, Chen L, De Philippis R (2008) Control of lunar and martian dust-experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of Inner Mongolia, China. Astrobiology 8:75–86. https://doi.org/10.1089/ast.2007.0122
CAS
Article
PubMed
Google Scholar
Liu W, Lin J, Pang X, Cui S, Mi S, Lin J (2011) Overexpression of rusticyanin in Acidithiobacillus ferrooxidans ATCC19859 increased Fe(II) oxidation activity. Curr Microbiol 62:320–324. https://doi.org/10.1007/s00284-010-9708-0
CAS
Article
PubMed
Google Scholar
Liu M, Dong F, Zhang W, Kang W, Nie X, Wei H et al (2012) Biosorption of uranium by Deinococcus radiodurans cells under culture conditions. Adv Mater Res 535–537:2446–2449. https://doi.org/10.4028/www.scientific.net/AMR.535-537.2446
CAS
Article
Google Scholar
Liu W, Lin J, Pang X, Mi S, Cui S, Lin J (2013) Increases of ferrous iron oxidation activity and arsenic stressed cell growth by overexpression of Cyc2 in Acidithiobacillus ferrooxidans ATCC19859. Biotechnol Appl Biochem 60:623–628. https://doi.org/10.1002/bab.1110
CAS
Article
PubMed
Google Scholar
Maneesuwannarat S, Kudpeng K, Yingchutrakul Y, Roytrakul S, vangnai AS, Yamashita M et al (2019) A possible protein model involved in gallium arsenide leaching by Cellulosimicrobium funkei. Miner Eng 137:207–216. https://doi.org/10.1016/j.mineng.2019.04.002
CAS
Article
Google Scholar
Marrero J, Coto O, Schippers A (2020) Metal bioleaching: fundamentals and geobiotechnical application of aerobic and anaerobic acidophiles. In: Biotechnological applications of extremophilic microorganisms (De Gruyter), p 261–288. doi:https://doi.org/10.1515/9783110424331-011.
Matsumoto T, Harries D, Langenhorst F, Miyake A, Noguchi T (2020) Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering. Nat Commun 11:1–8. https://doi.org/10.1038/s41467-020-14758-3
CAS
Article
Google Scholar
Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: Functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637. https://doi.org/10.1128/jb.178.3.633-637.1996
CAS
Article
PubMed
PubMed Central
Google Scholar
McLean RJC, Cassanto JM, Barnes MB, Koo JH (2001) Bacterial biofilm formation under microgravity conditions. FEMS Microbiol Lett 195:115–119. https://doi.org/10.1016/S0378-1097(00)00549-8
CAS
Article
PubMed
Google Scholar
McSween HY, Jeffrey Taylor G, Wyatt MB (2009) Elemental composition of the martian crust. Science 324:736–739. https://doi.org/10.1126/science.1165871
CAS
Article
PubMed
Google Scholar
Menezes AA, Cumbers J, Hogan JA, Arkin AP (2015a) Towards synthetic biological approaches to resource utilization on space missions. J R Soc Interface. https://doi.org/10.1098/rsif.2014.0715
Article
PubMed
PubMed Central
Google Scholar
Menezes AA, Montague MG, Cumbers J, Hogan JA, Arkin AP (2015b) Grand challenges in space synthetic biology. J R Soc Interface. https://doi.org/10.1098/rsif.2015.0803
Article
PubMed
PubMed Central
Google Scholar
Mergelov N, Mueller CW, Prater I, Shorkunov I, Dolgikh A, Zazovskaya E et al (2018) Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci Rep. https://doi.org/10.1038/s41598-018-21682-6
Article
PubMed
PubMed Central
Google Scholar
Metzger PT (2016) Space development and space science together, an historic opportunity. Space Policy 37:77–91. https://doi.org/10.1016/j.spacepol.2016.08.004
Article
Google Scholar
Metzger PT, Britt DT (2020) Model for asteroid regolith to guide simulant development. Icarus 350:113904. https://doi.org/10.1016/j.icarus.2020.113904
Article
Google Scholar
Metzger PT, Zacny K, Morrison P (2020) Thermal extraction of volatiles from lunar and asteroid regolith in axisymmetric Crank-Nicolson modeling. J Aerosp Eng 33:04020075. https://doi.org/10.1061/(asce)as.1943-5525.0001165
Article
Google Scholar
Meyer C (2003) Lunar sample mineralogy. In: NASA Lunar petrographic educational thin section set, 8–9
Middleton SS, Latmani RB, Mackey MR, Ellisman MH, Tebo BM, Criddle CS (2003) Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol Bioeng 83:627–637. https://doi.org/10.1002/bit.10725
CAS
Article
PubMed
Google Scholar
Milojevic T, Kölbl D, Ferrière L, Albu M, Kish A, Flemming RL et al (2019) Exploring the microbial biotransformation of extraterrestrial material on nanometer scale. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-54482-7
CAS
Article
Google Scholar
Milojevic T, Albu M, Kölbl D, Kothleitner G, Bruner R, Morgan ML (2021) Chemolithotrophy on the Noachian Martian breccia NWA 7034 via experimental microbial biotransformation. Commun Earth Environ. https://doi.org/10.1038/s43247-021-00105-x
Article
Google Scholar
Minton KW (1996) Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutat Res DNA Repair 363:1–7. https://doi.org/10.1016/0921-8777(95)00014-3
Article
PubMed
Google Scholar
Mishra D, Rhee YH (2014) Microbial leaching of metals from solid industrial wastes. J Microbiol 52:1–7. https://doi.org/10.1007/s12275-014-3532-3
CAS
Article
PubMed
Google Scholar
Moeller R, Raguse M, Reitz G, Okayasu R, Li Z, Klein S et al (2014) Resistance of Bacillus subtilis spore DNA to lethal ionizing radiation damage relies primarily on spore core components and DNA repair, with minor effects of oxygen radical detoxification. Appl Environ Microbiol 80:104–109. https://doi.org/10.1128/AEM.03136-13
CAS
Article
PubMed
PubMed Central
Google Scholar
Montague M, McArthur GH, Cockell CS, Held J, Marshall W, Sherman LA et al (2012) The role of synthetic biology for in situ resource utilization (ISRU). Astrobiology 12:1135–1142. https://doi.org/10.1089/ast.2012.0829
Article
PubMed
Google Scholar
Murphy JR, Leovy CB, Tillman JE (1990) Observations of Martian surface winds at the Viking Lander 1 site. J Geophys Res. https://doi.org/10.1029/jb095ib09p14555
Article
Google Scholar
Musk E (2017) Making humans a multi-planetary species. New Sp 5:46–61
Article
Google Scholar
Nangle SN, Wolfson MY, Hartsough L, Ma NJ, Mason CE, Merighi M et al (2020) The case for biotech on Mars. Nat Biotechnol 38:401–407. https://doi.org/10.1038/s41587-020-0485-4
CAS
Article
PubMed
Google Scholar
NASA-ASEE (1992) Space resources: materials. NASA Sci Tech Inf Progr 3
Nicholson WL, Ricco AJ (2020) Nanosatellites for biology in space: In situ measurement of Bacillus subtilis spore germination and growth after 6 months in low earth orbit on the O/OREOS mission. Life 10:1–14. https://doi.org/10.3390/life10010001
Article
Google Scholar
Niederwieser T, Kociolek P, Hoehn A, Klaus D (2019). Effect of altered nitrogen partial pressure on Chlorellaceae for spaceflight applications. Algal Res 41
Noël N, Florian B, Sand W (2010) AFM & EFM study on attachment of acidophilic leaching organisms. Hydrometallurgy 104:370–375. https://doi.org/10.1016/j.hydromet.2010.02.021
CAS
Article
Google Scholar
Ohmura N, Sasaki K, Matsumoto N, Saiki H (2002) Anaerobic respiration Using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriolo 184:7. https://doi.org/10.1128/JB.184.8.2081
Article
Google Scholar
Ohtake M, Matsunaga T, Haruyama J, Yokota Y, Morota T, Honda C et al (2009) The global distribution of pure anorthosite on the Moon. Nature 461:236–240. https://doi.org/10.1038/nature08317
CAS
Article
PubMed
Google Scholar
Okada T, Fukuhara T, Tanaka S, Taguchi M, Arai T, Senshu H et al (2020) Highly porous nature of a primitive asteroid revealed by thermal imaging. Nature 579:518–522. https://doi.org/10.1038/s41586-020-2102-6
CAS
Article
PubMed
Google Scholar
Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: Applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249–257. https://doi.org/10.1007/s00253-003-1404-6
CAS
Article
PubMed
Google Scholar
Olsson-Francis K, Cockell CS (2010) Use of cyanobacteria for in-situ resource use in space applications. Planet Space Sci 58:1279–1285. https://doi.org/10.1016/j.pss.2010.05.005
CAS
Article
Google Scholar
Payré V, Fabre C, Sautter V, Cousin A, Mangold N, Deit LL et al (2019) Copper enrichments in the Kimberley formation in Gale crater, Mars: evidence for a Cu deposit at the source. Icarus 321:736–751. https://doi.org/10.1016/j.icarus.2018.12.015
CAS
Article
Google Scholar
Pollard EC (1965) Theoretical studies on living systems in the absence of mechanical stress. J Theor Biol 8:113–123. https://doi.org/10.1016/0022-5193(65)90097-4
CAS
Article
PubMed
Google Scholar
Prölss GW (2004) Absorption and dissipation of solar wind energy. In: Physics of the earth’s space environment, pp 349–399. doi:https://doi.org/10.1007/978-3-642-97123-5_7.
Qiu MQ, Xiong SY, Zhang WM, Wang GX (2005) A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner Eng 18:987–990. https://doi.org/10.1016/j.mineng.2005.01.004
CAS
Article
Google Scholar
Raafat K, Burnett JA, Chapman T, Cockell CS (2013) The physics of mining in space. A&g. https://doi.org/10.1038/043437c0
Article
Google Scholar
Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324. https://doi.org/10.1099/mic.0.2006/001206-0
CAS
Article
PubMed
Google Scholar
Reed DW, Fujita Y, Daubaras DL, Jiao Y, Thompson VS (2016) Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy 166:34–40. https://doi.org/10.1016/j.hydromet.2016.08.006
CAS
Article
Google Scholar
Rieder R, Economou T, Wänke H, Turkevich A, Crisp J, Brückner J et al (1997) The chemical composition of martian soil and rocks returned by the mobile alpha proton x-ray spectrometer: preliminary results from the X-ray mode. Science 278:1771–1774. https://doi.org/10.1126/science.278.5344.1771
CAS
Article
PubMed
Google Scholar
Righter K, Go BM, Pando KA, Danielson L, Ross DK, Rahman Z et al (2017) Phase equilibria of a low S and C lunar core: implications for an early lunar dynamo and physical state of the current core. Earth Planet Sci Lett 463:323–332. https://doi.org/10.1016/j.epsl.2017.02.003
CAS
Article
Google Scholar
Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248. https://doi.org/10.1007/s00253-003-1448-7
CAS
Article
PubMed
Google Scholar
Rothschild LJ (2016) Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth). Biochem Soc Trans 44:1158–1164. https://doi.org/10.1042/BST20160067
CAS
Article
PubMed
PubMed Central
Google Scholar
Rozas EE, Mendes MA, Nascimento CAO, Espinosa DCR, Oliveira R, Oliveira G et al (2017) Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). J Hazard Mater 329:120–130. https://doi.org/10.1016/j.jhazmat.2017.01.037
CAS
Article
PubMed
Google Scholar
Sand W, Gehrke T, Jozsa P, Schippers A (2001) (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydro 59:159–175. https://doi.org/10.1016/S0304-386X(00)00180-8
CAS
Article
Google Scholar
Santomartino R, Waajen AC, Wit WD, Nicholson N, Parmitano L, Loudon C et al (2020) No effect of microgravity and simulated mars gravity on final bacterial cell concentrations on the international space station: applications to space bioproduction. Front Microbiol 11:1–15. https://doi.org/10.3389/fmicb.2020.579156
Article
Google Scholar
Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321. https://doi.org/10.1128/aem.65.1.319-321.1999
CAS
Article
PubMed
PubMed Central
Google Scholar
Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2013) Biomining: metal recovery from ores with microorganisms. Geobiotechnol i Adv Biochem Eng 141:1–47. https://doi.org/10.1007/10_2013_216
CAS
Article
Google Scholar
Schuerger AC, Nicholson WL (2016) Twenty species of hypobarophilic bacteria recovered from diverse soils exhibit growth under simulated martian conditions at 0.7 kPa. Astrobiology 16:964–976. https://doi.org/10.1089/ast.2016.1587
CAS
Article
PubMed
Google Scholar
Schwandt C, Hamilton JA, Fray DJ, Crawford IA (2012) The production of oxygen and metal from lunar regolith. Planet Space Sci 74:49–56. https://doi.org/10.1016/j.pss.2012.06.011
CAS
Article
Google Scholar
Schwendner P, Schuerger AC (2020) Exploring microbial activity in low-pressure environments. Curr Issues Mol Biol 38:163–196. https://doi.org/10.21775/cimb.038.163
Article
PubMed
Google Scholar
Senatore G, Mastroleo F, Leys N, Mauriello G (2018) Effect of microgravity and space radiation on microbes. Fut Microbiol 13:831–847. https://doi.org/10.2217/fmb-2017-0251
CAS
Article
Google Scholar
Singh S (2020) Biosorption of heavy metals by cyanobacteria: potential of live and dead cells in bioremediation. Microbial bioremediation and biodegradation. Springer, Berlin, pp 409–424
Chapter
Google Scholar
Singh S, Cameotra SS (2015) Anaerobic bioleaching by acidophilic bacterial strains. In: Sukla LB, Pradhan N, Panda S, Mishra BK (eds) Environmental microbial biotechnology. Springer, Berlin, pp 179–201
Chapter
Google Scholar
Sivakumar V, Neelakantan R, Santosh M (2017) Lunar surface mineralogy using hyperspectral data: Implications for primordial crust in the Earth–Moon system. Geosci Front 8:457–465. https://doi.org/10.1016/j.gsf.2016.03.005
CAS
Article
Google Scholar
Slenzka K, Kempf J (2010) Bio-ISRU concepts using microorganisms to release O2 and H2 on Moon and Mars. In: 38th COSPAR Scientific Assembly 2010
Srichandan H, Mohapatra RK, Parhi PK, Mishra S (2019) Bioleaching approach for extraction of metal values from secondary solid wastes: a critical review. Hydrometallurgy 189:105122. https://doi.org/10.1016/j.hydromet.2019.105122
CAS
Article
Google Scholar
Steenstra ES, Agmon N, Berndt J, Klemme S, Matveev S, Van Westrenen W (2018) Depletion of potassium and sodium in mantles of Mars, Moon and Vesta by core formation. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-25505-6
CAS
Article
Google Scholar
Steenstra ES, Berndt J, Klemme S, Rohrbach A, Bullock ES, van Westrenen W (2020) An experimental assessment of the potential of sulfide saturation of the source regions of eucrites and angrites: Implications for asteroidal models of core formation, late accretion and volatile element depletions. Geochim Cosmochim Acta 269:39–62. https://doi.org/10.1016/j.gca.2019.10.006
CAS
Article
Google Scholar
Stern SA (1999) The lunar atmosphere: history, status, current problems, and context. Rev Geophys 37:453–491. https://doi.org/10.1029/1999RG900005
CAS
Article
Google Scholar
Stevens AH, Childers D, Fox-powell M, Nicholson N, Jhoti E, Cockell CS (2019) Growth, viability, and death of planktonic and biofilm Sphingomonas desiccabilis in simulated martian brines. Astrobiology 19:87–98. https://doi.org/10.1089/ast.2018.1840
CAS
Article
PubMed
Google Scholar
Tait AW, Gagen EJ, Wilson SA, Tomkins AG, Southam G (2017) Microbial populations of stony meteorites: substrate controls on first colonizers. Front Microbiol 8:1–14. https://doi.org/10.3389/fmicb.2017.01227
Article
Google Scholar
Taylor GJ (2013) The bulk composition of Mars. Chem Erde 73:401–420. https://doi.org/10.1016/j.chemer.2013.09.006
CAS
Article
Google Scholar
Taylor SR, Taylor GJ, Taylor LA (2006) The moon: a taylor perspective. Geochim Cosmochim Acta 70:5904–5918. https://doi.org/10.1016/j.gca.2006.06.262
CAS
Article
Google Scholar
Tsuchiyama A, Uesugi M, Matsushima T, Michikami T, Kadono T, Nakamura T et al (2011) Evolution of Itokawa regoliththree-dimensional structure of hayabusa samples: origin and evolution of itokawa regolith. Science 333:1125–1128
CAS
Article
PubMed
Google Scholar
Turner J, Anderson P, Lachlan-Cope T, Colwell S, Phillips T, Kirchgaessner A et al (2009) Record low surface air temperature at Vostok station, Antarctica. J Geophys Res Atmos 114:1–14. https://doi.org/10.1029/2009JD012104
Article
Google Scholar
Ulrich N, Nagler K, Laue M, Cockell CS, Setlow P, Id RM (2018) Experimental studies addressing the longevity of Bacillus subtilis spores—The first data from a 500-year experiment. 1–14.
Valix M (2017) Bioleaching of electronic waste: milestones and challenges. Elsevier BV, Amsterdam
Book
Google Scholar
Verseux C (2020) Bacterial growth at low pressure : a short review. Front Astron Sp Sci 7:1–10. https://doi.org/10.3389/fspas.2020.00030
Article
Google Scholar
Verseux C, Baqué M, Lehto K, De Vera JPP, Rothschild LJ, Billi D (2016) Sustainable life support on Mars—the potential roles of cyanobacteria. Int J Astrobiol 15:65–92. https://doi.org/10.1017/S147355041500021X
CAS
Article
Google Scholar
Verseux C, Heinicke C, Ramalho T, Determann J, Smagin M, Avila M (2021) A low-pressure, N2/CO2 atmosphere is suitable for cyanobacterium-based life-support systems on Mars. Front Microbiol. https://doi.org/10.3389/fmicb.2021.611798
Article
PubMed
PubMed Central
Google Scholar
Volger R, Pettersson GM, Brouns SJJ, Rothschild LJ, Cowley A, Lehner BAE (2020) Mining moon and mars with microbes: biological approaches to extract iron from Lunar and Martian regolith. Planet Space Sci 184:104850. https://doi.org/10.1016/j.pss.2020.104850
CAS
Article
Google Scholar
Volponi M, Lasseur C (2020) Considerations on life support systems for interstellar travel: a regenerative story. Acta Fut 12:133–149. https://doi.org/10.5281/zenodo.3747356
Article
Google Scholar
Wadsworth J, Cockell CS (2017) Perchlorates on Mars enhance the bacteriocidal effects of UV light. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-04910-3
CAS
Article
Google Scholar
Wang Z, Becker H (2017) Chalcophile elements in Martian meteorites indicate low sulfur content in the Martian interior and a volatile element-depleted late veneer. Earth Planet Sci Lett 463:56–68. https://doi.org/10.1016/j.epsl.2017.01.023
CAS
Article
Google Scholar
Williams JP, Paige DA, Greenhagen BT, Sefton-Nash E (2017) The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment. Icarus 283:300–325. https://doi.org/10.1016/j.icarus.2016.08.012
Article
Google Scholar
Wittenberg LJ, Santarius JF, Kulcinski GL (1986) Lunar source of 3 He for commercial fusion power. Fusion Technol 10:167–178. https://doi.org/10.13182/FST86-A24972
CAS
Article
Google Scholar
Yamada-Onodera K, Mukumoto H, Katsuyama Y, Tani Y (2002) Degradation of long-chain alkanes by a polyethylene-degrading fungus Penicillium Simplicissimum YK. Enzyme Microb Technol 30:828–831. https://doi.org/10.1016/S0141-0229(02)00065-0
CAS
Article
Google Scholar
Yen AS, Gellert R, Schröder C, Morris RV, Bell JF, Knudson AT et al (2005) An integrated view of the chemistry and mineralogy of martian soils. Nature 436:49–54. https://doi.org/10.1038/nature03637
CAS
Article
PubMed
Google Scholar
Yoshizaki T, McDonough WF (2020) The composition of Mars. Geochim Cosmochim Acta 273:137–162. https://doi.org/10.1016/j.gca.2020.01.011
CAS
Article
Google Scholar
Yoshizaki T, McDonough WF (2021) Earth and mars—distinct inner solar system products. Chem Erde 81:125746. https://doi.org/10.1016/j.chemer.2021.125746
CAS
Article
Google Scholar
Yu R, Liu J, Tan J, Zeng W, Shi L, Gu G et al (2014) Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching. Int J Miner Metall Mater 21:311–316. https://doi.org/10.1007/s12613-014-0910-0
CAS
Article
Google Scholar
Zea L (2015) Phenotypic and gene expression responses of E. coli to antibiotics during spaceflight. Doctoral dissertation, Univ. Colorado. Boulder, Colorado, USA. https://www.colorado.edu/faculty/zea-luis/sites/default/files/attached-files/zea_-_thesis_-_published.pdf.
Zea L, Prasad N, Levy SE, Stodieck L, Jones A, Shrestha S et al (2016) A molecular genetic basis explaining altered bacterial behavior in space. PLoS ONE 2:1–23. https://doi.org/10.1371/journal.pone.0164359
CAS
Article
Google Scholar
Zea L, Larsen M, Estante F, Qvortrup K, Moeller R, de Oliveira SD et al (2017) Phenotypic changes exhibited by E. coli cultured in space. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01598
Article
PubMed
PubMed Central
Google Scholar
Zea L, Nisar Z, Rubin P, Luo J, Mcbride SA, Moeller R et al (2018) Design of a spaceflight biofilm experiment. Acta Astronaut 148:294–300. https://doi.org/10.1016/j.actaastro.2018.04.039
Article
PubMed
PubMed Central
Google Scholar
Zea L, Mclean RJC, Rook TA, Angle G, Carter DL, Delegard A et al (2020) Potential biofilm control strategies for extended spaceflight missions. Biofilm. https://doi.org/10.1016/j.bioflm.2020.100026
Article
PubMed
PubMed Central
Google Scholar
Zeitlin C, Hassler DM, Cucinotta FA, Ehresmann B, Wimmer-Schweingruber RF, Brinza DE, Kang S, Weigle G, Böttcher S, Böhm E, Burmeister S, Guo J, Köhler J, Martin C, Posner A, Rafkin S, Reitz G (2013) Measurements of energetic particle radiation in transit to Mars on the Mars science laboratory. Science 340(6136):1080–1084. https://doi.org/10.1126/science.1235989
CAS
Article
PubMed
Google Scholar
Zhang S, Wimmer-Schweingruber RF, Yu J, Wang CC, Fu Q, Zou Y et al (2020) First measurements of the radiation dose on the lunar surface. Sci Adv 6:1–6. https://doi.org/10.1126/sciadv.aaz1334
CAS
Article
Google Scholar