Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation

  • Jonathan Botha
  • Eshchar Mizrachi
  • Alexander A. Myburg
  • Don A. Cowan
Review

Abstract

Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a ‘toolbox’ of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.

Keywords

Lignocellulose CAZyme Extreme thermophiles Synthetic biology Protein domains 

Supplementary material

792_2017_974_MOESM1_ESM.xlsx (14 kb)
Supplementary material 1 (XLSX 13 kb)
792_2017_974_MOESM2_ESM.pdf (45 kb)
Online Resource 2 CAZyme domains identified from extremely thermophilic organisms proteomes using HMMER analysis (PDF 44 kb)
792_2017_974_MOESM3_ESM.docx (81 kb)
Supplementary material 3 (DOCX 80 kb)

References

  1. Abramson M, Shoseyov O, Shani Z (2010) Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci 178:61–72CrossRefGoogle Scholar
  2. Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861PubMedCrossRefGoogle Scholar
  3. André I, Potocki-Véronèse G, Barbe S, Moulis C, Remaud-Siméon M (2014) CAZyme discovery and design for sweet dreams. Curr Opin Chem Biol 19:17–24PubMedCrossRefGoogle Scholar
  4. André-Miral C, Koné FM, Solleux C, Grandjean C, Dion M, Tran V, Tellier C (2015) De novo design of a trans-β-N-acetylglucosaminidase activity from a GH1 β-glycosidase by mechanism engineering. Glycobiology 25:394–402PubMedCrossRefGoogle Scholar
  5. Arab-Jaziri F et al (2013) Engineering transglycosidase activity into a GH51 α-l-arabinofuranosidase. New Biotechnol 30:536–544CrossRefGoogle Scholar
  6. Arab-Jaziri F, Bissaro B, Tellier C, Dion M, Fauré R, O’Donohue MJ (2015) Enhancing the chemoenzymatic synthesis of arabinosylated xylo-oligosaccharides by GH51 α-l-arabinofuranosidase. Carbohydr Res 401:64–72PubMedCrossRefGoogle Scholar
  7. Araki R, Karita S, Tanaka A, Kimura T, Sakka K (2006) Effect of family 22 carbohydrate-binding module on the thermostability of Xyn10B catalytic module from Clostridium stercorarium. Biosci Biotechnol Biochem 70:3039PubMedCrossRefGoogle Scholar
  8. Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22:618–626. https://doi.org/10.1016/j.copbio.2011.06.010 PubMedCrossRefGoogle Scholar
  9. Attia M, Stepper J, Davies GJ, Brumer H (2016) Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation. FEBS J 283:1701–1719PubMedCrossRefGoogle Scholar
  10. Bhatia R, Gallagher JA, Gomez LD, Bosch M (2017) Genetic engineering of grass cell wall polysaccharides for biorefining. Plant Biotechnol J 15:1071–1092PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bissaro B et al (2014) Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products. Biochim Biophys Acta (BBA) (General Subjects) 1840:626–636CrossRefGoogle Scholar
  12. Blumer-Schuette SE et al (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38:393–448PubMedCrossRefGoogle Scholar
  13. Brödel AK, Jaramillo A, Isalan M (2017) Intracellular directed evolution of proteins from combinatorial libraries based on conditional phage replication. Nat Protoc 12:1830–1843PubMedCrossRefGoogle Scholar
  14. Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390PubMedCrossRefGoogle Scholar
  15. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238PubMedCrossRefGoogle Scholar
  16. Castiglia D et al (2016) High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass. Biotechnol Biofuels 9:1CrossRefGoogle Scholar
  17. Chaban B, Ng SY, Jarrell KF (2006) Archaeal habitats-from the extreme to the ordinary. Can J Microbiol 52:73–116PubMedCrossRefGoogle Scholar
  18. Chung D, Young J, Cha M, Brunecky R, Bomble YJ, Himmel ME, Westpheling J (2015) Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose. Biotechnol Biofuels 8:1CrossRefGoogle Scholar
  19. Cobucci-Ponzano B et al (2010) A new archaeal β-glycosidase from Sulfolobus solfataricus: seeding a novel retaining β-glycan-specific glycoside hydrolase family along with the human non-lysosomal glucosylceramidase GBA2. J Biol Chem 285:20691–20703PubMedPubMedCentralCrossRefGoogle Scholar
  20. Corrêa JM et al (2012) Expression and characterization of a GH39 β-xylosidase II from Caulobacter crescentus. Appl Biochem Biotechnol 168:2218–2229PubMedCrossRefGoogle Scholar
  21. Czjzek M, Ficko-Blean E (2017) Probing the complex architecture of multimodular carbohydrate-active enzymes using a combination of small angle X-ray scattering and X-ray crystallography protein-carbohydrate interactions. Methods Protoc 1588:239–253Google Scholar
  22. Davids T, Schmidt M, Böttcher D, Bornscheuer UT (2013) Strategies for the discovery and engineering of enzymes for biocatalysis. Curr Opin Chem Biol 17:215–220PubMedCrossRefGoogle Scholar
  23. de Souza AR et al (2016) Engineering increased thermostability in the GH-10 endo-1, 4-β-xylanase from Thermoascus aurantiacus CBMAI 756. Int J Biol Macromol 93:20–26PubMedCrossRefGoogle Scholar
  24. Diogo JA et al (2015) Development of a chimeric hemicellulase to enhance the xylose production and thermotolerance. Enzym Microb Technol 69:31–37CrossRefGoogle Scholar
  25. dos Santos CR, Cordeiro RL, Wong DW, Murakami MT (2015) Structural basis for xyloglucan specificity and α-d-Xyl p (1 → 6)-d-Glcp recognition at the − 1 subsite within the GH5 family. Biochemistry 54:1930–1942PubMedCrossRefGoogle Scholar
  26. Duan C-J, Huang M-Y, Pang H, Zhao J, Wu C-X, Feng J-X (2017) Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes. Appl Microbiol Biotechnol 101:5723–5737PubMedCrossRefGoogle Scholar
  27. Elleuche S (2015) Bringing functions together with fusion enzymes—from nature’s inventions to biotechnological applications. Appl Microbiol Biotechnol 99:1545–1556PubMedCrossRefGoogle Scholar
  28. Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123PubMedCrossRefGoogle Scholar
  29. Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119PubMedCrossRefGoogle Scholar
  30. Endy D (2005) Foundations for engineering biology. Nature 438:449–453PubMedCrossRefGoogle Scholar
  31. Espina G, Eley K, Pompidor G, Schneider TR, Crennell SJ, Danson MJ (2014) A novel β-xylosidase structure from Geobacillus thermoglucosidasius: the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds. Acta Crystallogr D Biol Crystallogr 70:1366–1374PubMedCrossRefGoogle Scholar
  32. Fatima B, Hussain Z (2015) Xylose isomerases from thermotogales. J Anim Plant Sci 25(1):10–18Google Scholar
  33. Ferrara MC, Cobucci-Ponzano B, Carpentieri A, Henrissat B, Rossi M, Amoresano A, Moracci M (2014) The identification and molecular characterization of the first archaeal bifunctional exo-β-glucosidase/N-acetyl-β-glucosaminidase demonstrate that family GH116 is made of three functionally distinct subfamilies. Biochim Biophys Acta (BBA) (General Subjects) 1840:367–377CrossRefGoogle Scholar
  34. Foumani M, Vuong TV, MacCormick B, Master ER (2015) Enhanced polysaccharide binding and activity on linear β-glucans through addition of carbohydrate-binding modules to either terminus of a glucooligosaccharide oxidase. PLoS One 10:e0125398PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gan R, Jewett MC (2016) Evolution of translation initiation sequences using in vitro yeast ribosome display. Biotechnol Bioeng 113:1777–1786PubMedCrossRefGoogle Scholar
  36. Gao J, Wakarchuk W (2014) Characterization of five β-glycoside hydrolases from Cellulomonas fimi ATCC 484. J Bacteriol 196:4103–4110PubMedPubMedCentralCrossRefGoogle Scholar
  37. Geisler-Lee J et al (2006) Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiol 140:946–962PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gerday C, Glansdorff N (2007) Physiology and biochemistry of extremophiles. ASM Press, WashingtonGoogle Scholar
  39. Ghatge SS et al (2014) Characterization of modular bifunctional processive endoglucanase Cel5 from Hahella chejuensis KCTC 2396. Appl Microbiol Biotechnol 98:4421–4435PubMedCrossRefGoogle Scholar
  40. Godoy AS, de Lima MZ, Camilo CM, Polikarpov I (2016) Crystal structure of a putative exo-β-1, 3-galactanase from Bifidobacterium bifidum S17. Acta Crystallogr Sect F Struct Biol Commun 72:288–293CrossRefGoogle Scholar
  41. Guerriero G, Hausman J-F, Strauss J, Ertan H, Siddiqui KS (2015) Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193PubMedPubMedCentralCrossRefGoogle Scholar
  42. Han N, Miao H, Ding J, Li J, Mu Y, Zhou J, Huang Z (2017a) Improving the thermostability of a fungal GH11 xylanase via site-directed mutagenesis guided by sequence and structural analysis. Biotechnol Biofuels 10:133PubMedPubMedCentralCrossRefGoogle Scholar
  43. Han Y-B, Chen L-Q, Li Z, Tan Y-M, Feng Y, Yang G-Y (2017b) Structural insights into the broad substrate specificity of a novel endoglycoceramidase I belonging to a new subfamily of GH5 glycosidases. J Biol Chem 292:4789–4800PubMedCrossRefGoogle Scholar
  44. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52PubMedCrossRefGoogle Scholar
  45. Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18PubMedCrossRefGoogle Scholar
  46. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807PubMedCrossRefGoogle Scholar
  47. Hoffmam ZB et al (2016) Xylan-specific carbohydrate-binding module belonging to family 6 enhances the catalytic performance of a GH11 endo-xylanase. New Biotechnol 33:467–472CrossRefGoogle Scholar
  48. Horiya S, Bailey JK, Krauss IJ (2017) Directed evolution of glycopeptides using mRNA display. Methods Enzymol 597:83–141PubMedCrossRefGoogle Scholar
  49. Huang Z, Liu X, Zhang S, Liu Z (2014) GH52 xylosidase from Geobacillus stearothermophilus: characterization and introduction of xylanase activity by site-directed mutagenesis of Tyr509. J Ind Microbiol Biotechnol 41:65–74PubMedCrossRefGoogle Scholar
  50. Huy ND et al (2016) Characterization of a novel manganese dependent endoglucanase belongs in GH family 5 from Phanerochaete chrysosporium. J Biosci Bioeng 121:154–159PubMedCrossRefGoogle Scholar
  51. Khan MIM, Sajjad M, Sadaf S, Zafar R, Niazi UH, Akhtar MW (2013) The nature of the carbohydrate binding module determines the catalytic efficiency of xylanase Z of Clostridium thermocellum. J Biotechnol 168:403–408PubMedCrossRefGoogle Scholar
  52. Kim JY, Nong G, Rice JD, Gallo M, Preston JF, Altpeter F (2016) In planta production and characterization of a hyperthermostable GH10 xylanase in transgenic sugarcane. Plant Mol Biol 93:465–478PubMedCrossRefGoogle Scholar
  53. Klenk C, Ehrenmann J, Schütz M, Plückthun A (2016) A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution. Sci Rep 6:21294PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kuuskeri J et al (2016) Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnol Biofuels 9:192PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lee Y-E, Lowe S, Henrissat B, Zeikus JG (1993) Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J Bacteriol 175:5890–5898PubMedPubMedCentralCrossRefGoogle Scholar
  56. Leuschner C, Antranikian G (1995) Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World J Microbiol Biotechnol 11:95–114PubMedCrossRefGoogle Scholar
  57. Li S, Yang X, Bao M, Wu Y, Yu W, Han F (2015) Family 13 carbohydrate-binding module of alginate lyase from Agarivorans sp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution. FEMS Microbiol Lett 362:fnv054PubMedGoogle Scholar
  58. Lin J-L, Wagner JM, Alper HS (2017) Enabling tools for high-throughput detection of metabolites: metabolic engineering and directed evolution applications. Biotechnol Adv Manuscr. https://doi.org/10.1016/j.biotechadv.2017.07.005 Google Scholar
  59. Liu S, Ding S (2016) Replacement of carbohydrate binding modules improves acetyl xylan esterase activity and its synergistic hydrolysis of different substrates with xylanase. BMC Biotechnol 16:73PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495PubMedCrossRefGoogle Scholar
  61. López-Mondéjar R, Zühlke D, Větrovský T, Becher D, Riedel K, Baldrian P (2016) Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels 9:104PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ma F, Fischer M, Han Y, Withers SG, Feng Y, Yang G-Y (2016) Substrate engineering enabling fluorescence droplet entrapment for IVC-FACS-based ultrahigh-throughput screening. Anal Chem 88:8587–8595PubMedCrossRefGoogle Scholar
  63. Matsuzawa T, Kaneko S, Yaoi K (2016) Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates. Appl Microbiol Biotechnol 100:8043–8051PubMedCrossRefGoogle Scholar
  64. McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci USA 103:4765–4770PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mir BA, Mewalal R, Mizrachi E, Myburg AA, Cowan DA (2014) Recombinant hyperthermophilic enzyme expression in plants: a novel approach for lignocellulose digestion. Trends Biotechnol 32:281–289PubMedCrossRefGoogle Scholar
  66. Montalvo-Rodriguez R, Haseltine C, Huess-LaRossa K, Clemente T, Soto S, Staswick P, Blum P (2000) Autohydrolysis of plant polysaccharides using transgenic hyperthermophilic enzymes. Biotechnol Bioeng 70:151–159PubMedCrossRefGoogle Scholar
  67. Montella S, Ventorino V, Lombard V, Henrissat B, Pepe O, Faraco V (2017) Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Sci Rep 7:42623PubMedPubMedCentralCrossRefGoogle Scholar
  68. Morrison JM, Elshahed MS, Youssef N (2016) A multifunctional GH39 glycoside hydrolase from the anaerobic gut fungus Orpinomyces sp. strain C1A. PeerJ 4:e2289PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mir B, Myburg, A, Mizrachi E, Cowan DA (2017) In planta expression of hyperthermophilic enzymes as a strategy for accelerated lignocellulosic digestion. Sci Rep Manuscr (in press)Google Scholar
  70. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597. https://doi.org/10.1016/j.rser.2009.10.003 CrossRefGoogle Scholar
  71. Nisha M, Satyanarayana T (2016) Characteristics, protein engineering and applications of microbial thermostable pullulanase and pullulan hydrolases. Appl Microbiol Biotechnol 100:5661–5679PubMedCrossRefGoogle Scholar
  72. Oliveira C, Carvalho V, Domingues L, Gama FM (2015) Recombinant CBM-fusion technology—applications overview. Biotechnol Adv 33:358–369PubMedCrossRefGoogle Scholar
  73. Pan R, Hu Y, Long L, Wang J, Ding S (2016) Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22. Enzym Microb Technol 91:42–51CrossRefGoogle Scholar
  74. Pinard D et al (2015) Comparative analysis of plant carbohydrate active Enzymes and their role in xylogenesis. BMC Genom 16:402CrossRefGoogle Scholar
  75. Pires VM et al (2017) Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C. J Biol Chem M116:767541Google Scholar
  76. Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422PubMedCrossRefGoogle Scholar
  77. Reetz MT (2017) Recent advances in directed evolution of stereoselective enzymes. In: Directed enzyme evolution: advances and applications. Springer International Publishing, pp 69–99. https://doi.org/10.1007/978-3-319-50413-1_3
  78. Reetz MT, Carballeira JD, Peyralans J, Höbenreich H, Maichele A, Vogel A (2006) Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. Chem A Eur J 12:6031–6038CrossRefGoogle Scholar
  79. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101PubMedCrossRefGoogle Scholar
  80. Sainz-Polo MA, Valenzuela SV, González B, Pastor FJ, Sanz-Aparicio J (2014a) Structural analysis of glucuronoxylan-specific Xyn30D and its attached CBM35 domain gives insights into the role of modularity in specificity. J Biol Chem 289:31088–31101PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sainz-Polo MÁ, Valenzuela SV, Pastor FJ, Sanz-Aparicio J (2014b) Crystallization and preliminary X-ray diffraction analysis of Xyn30D from Paenibacillus barcinonensis. Acta Crystallogr Sect F Struct Biol Commun 70:963–966CrossRefGoogle Scholar
  82. Sainz-Polo MA, González B, Menéndez M, Pastor FJ, Sanz-Aparicio J (2015) Exploring multimodularity in plant cell wall deconstruction: structural and functional analysis of Xyn10C containing the CBM22-1-CBM22-2 tandem. J Biol Chem M115:659300Google Scholar
  83. Sajjad M, Khan MIM, Akbar NS, Ahmad S, Ali I, Akhtar MW (2010) Enhanced expression and activity yields of Clostridium thermocellum xylanases without non-catalytic domains. J Biotechnol 145:38–42PubMedCrossRefGoogle Scholar
  84. Schneider WDH et al (2016) Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass. Biotechnol Biofuels 9:66PubMedPubMedCentralCrossRefGoogle Scholar
  85. Schückel J, Kračun SK, Willats WG (2016) High-throughput screening of carbohydrate-degrading enzymes using novel insoluble chromogenic substrate assay kits. J Vis Exp 115:e54286. https://doi.org/10.3791/54286 Google Scholar
  86. Smart M, Huddy RJ, Cowan DA, Trindade M (2017) Liquid phase multiplex high-throughput screening of metagenomic libraries using p-nitrophenyl-linked substrates for accessory lignocellulosic enzymes metagenomics. Methods Protoc 1539:219–228Google Scholar
  87. Smolke CD (2009) Building outside of the box: iGEM and the BioBricks Foundation. Nat Biotechnol 27:1099–1102PubMedCrossRefGoogle Scholar
  88. Solomon KV et al (2016) Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351:1192–1195PubMedPubMedCentralCrossRefGoogle Scholar
  89. Tóth Á et al (2016) Cloning, expression and biochemical characterization of endomannanases from Thermobifida species isolated from different niches. PLoS One 11:e0155769PubMedPubMedCentralCrossRefGoogle Scholar
  90. Traxlmayr MW, Shusta EV (2017) Directed evolution of protein thermal stability using yeast surface display. Synth Antib Methods Protoc 1575:45–65Google Scholar
  91. Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5:567–573PubMedCrossRefGoogle Scholar
  92. Turumtay H (2015) Cell wall engineering by heterologous expression of cell wall-degrading enzymes for better conversion of lignocellulosic biomass into biofuels. Bioenergy Res 8:1574–1588CrossRefGoogle Scholar
  93. Urbieta MS, Donati ER, Chan K-G, Shahar S, Sin LL, Goh KM (2015) Thermophiles in the genomic era: biodiversity, science, and applications. Biotechnol Adv 33:633–647PubMedCrossRefGoogle Scholar
  94. Valadares F et al (2016) Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification. Biotechnol Biofuels 9:110PubMedPubMedCentralCrossRefGoogle Scholar
  95. Valenzuela SV, Diaz P, Pastor FJ (2012) Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module. Appl Environ Microbiol 78:3923–3931PubMedPubMedCentralCrossRefGoogle Scholar
  96. Venditto I et al (2015) Family 46 carbohydrate-binding modules contribute to the enzymatic hydrolysis of xyloglucan and β-1, 3–1, 4-glucans through distinct mechanisms. J Biol Chem 290:10572–10586PubMedPubMedCentralCrossRefGoogle Scholar
  97. Verma AK, Goyal A (2014) In silico structural characterization and molecular docking studies of first glucuronoxylan-xylanohydrolase (Xyn30A) from family 30 glycosyl hydrolase (GH30) from Clostridium thermocellum. Mol Biol 48:278–286CrossRefGoogle Scholar
  98. Verma AK et al (2013) Overexpression, crystallization and preliminary X-ray crystallographic analysis of glucuronoxylan xylanohydrolase (Xyn30A) from Clostridium thermocellum. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:1440–1442PubMedPubMedCentralCrossRefGoogle Scholar
  99. Vilanova C, Porcar M (2014) iGEM 2.0—refoundations for engineering biology. Nat Biotechnol 32:420–424PubMedCrossRefGoogle Scholar
  100. Voutilainen SP, Nurmi-Rantala S, Penttilä M, Koivula A (2014) Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 98:2991–3001PubMedCrossRefGoogle Scholar
  101. Walker JA et al (2015) Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Biotechnol Biofuels 8:220PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wang C, Dong D, Wang H, Müller K, Qin Y, Wang H, Wu W (2016a) Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 9:22PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wang Y, Yu W, Han F (2016b) Expression and characterization of a cold-adapted, thermotolerant and denaturant-stable GH5 endoglucanase Celal_2753 that withstands boiling from the psychrophilic bacterium Cellulophaga algicola IC166T. Biotechnol Lett 38:285–290PubMedCrossRefGoogle Scholar
  104. Xue X et al (2015) The N-terminal GH10 domain of a multimodular protein from Caldicellulosiruptor bescii is a versatile xylanase/β-glucanase that can degrade crystalline cellulose. Appl Environ Microbiol 81:3823–3833PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yi Z, Su X, Revindran V, Mackie RI, Cann I (2013) Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose. PLoS One 8:e84172PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zang H et al (2015) A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production. Enzym Microb Technol 78:1–9CrossRefGoogle Scholar
  107. Yang Y et al (2015) A mechanism of glucose tolerance and stimulation of GH1 β-glucosidases. Sci Rep 5:17296PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhang X et al. (2015) Subsite-specific contributions of different aromatic residues in the active site architecture of glycoside hydrolase family 12. Sci Rep 5:18357PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zhang H et al. (2017) Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01. Sci Rep 7:4431PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Jonathan Botha
    • 1
    • 2
    • 4
  • Eshchar Mizrachi
    • 2
    • 3
  • Alexander A. Myburg
    • 2
    • 3
  • Don A. Cowan
    • 1
    • 2
    • 4
  1. 1.Department of Genetics, Centre for Microbial Ecology and GenomicsUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of GeneticsUniversity of PretoriaPretoriaSouth Africa
  3. 3.Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  4. 4.Genomics Research Institute (GRI)University of PretoriaPretoriaSouth Africa

Personalised recommendations