Skip to main content

Advertisement

Log in

Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a ‘toolbox’ of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramson M, Shoseyov O, Shani Z (2010) Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci 178:61–72

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • André I, Potocki-Véronèse G, Barbe S, Moulis C, Remaud-Siméon M (2014) CAZyme discovery and design for sweet dreams. Curr Opin Chem Biol 19:17–24

    Article  PubMed  CAS  Google Scholar 

  • André-Miral C, Koné FM, Solleux C, Grandjean C, Dion M, Tran V, Tellier C (2015) De novo design of a trans-β-N-acetylglucosaminidase activity from a GH1 β-glycosidase by mechanism engineering. Glycobiology 25:394–402

    Article  PubMed  CAS  Google Scholar 

  • Arab-Jaziri F et al (2013) Engineering transglycosidase activity into a GH51 α-l-arabinofuranosidase. New Biotechnol 30:536–544

    Article  CAS  Google Scholar 

  • Arab-Jaziri F, Bissaro B, Tellier C, Dion M, Fauré R, O’Donohue MJ (2015) Enhancing the chemoenzymatic synthesis of arabinosylated xylo-oligosaccharides by GH51 α-l-arabinofuranosidase. Carbohydr Res 401:64–72

    Article  CAS  PubMed  Google Scholar 

  • Araki R, Karita S, Tanaka A, Kimura T, Sakka K (2006) Effect of family 22 carbohydrate-binding module on the thermostability of Xyn10B catalytic module from Clostridium stercorarium. Biosci Biotechnol Biochem 70:3039

    Article  CAS  PubMed  Google Scholar 

  • Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22:618–626. https://doi.org/10.1016/j.copbio.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  • Attia M, Stepper J, Davies GJ, Brumer H (2016) Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation. FEBS J 283:1701–1719

    Article  CAS  PubMed  Google Scholar 

  • Bhatia R, Gallagher JA, Gomez LD, Bosch M (2017) Genetic engineering of grass cell wall polysaccharides for biorefining. Plant Biotechnol J 15:1071–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bissaro B et al (2014) Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products. Biochim Biophys Acta (BBA) (General Subjects) 1840:626–636

    Article  CAS  Google Scholar 

  • Blumer-Schuette SE et al (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38:393–448

    Article  CAS  PubMed  Google Scholar 

  • Brödel AK, Jaramillo A, Isalan M (2017) Intracellular directed evolution of proteins from combinatorial libraries based on conditional phage replication. Nat Protoc 12:1830–1843

    Article  PubMed  CAS  Google Scholar 

  • Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390

    Article  CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Castiglia D et al (2016) High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass. Biotechnol Biofuels 9:1

    Article  CAS  Google Scholar 

  • Chaban B, Ng SY, Jarrell KF (2006) Archaeal habitats-from the extreme to the ordinary. Can J Microbiol 52:73–116

    Article  CAS  PubMed  Google Scholar 

  • Chung D, Young J, Cha M, Brunecky R, Bomble YJ, Himmel ME, Westpheling J (2015) Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose. Biotechnol Biofuels 8:1

    Article  CAS  Google Scholar 

  • Cobucci-Ponzano B et al (2010) A new archaeal β-glycosidase from Sulfolobus solfataricus: seeding a novel retaining β-glycan-specific glycoside hydrolase family along with the human non-lysosomal glucosylceramidase GBA2. J Biol Chem 285:20691–20703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrêa JM et al (2012) Expression and characterization of a GH39 β-xylosidase II from Caulobacter crescentus. Appl Biochem Biotechnol 168:2218–2229

    Article  PubMed  CAS  Google Scholar 

  • Czjzek M, Ficko-Blean E (2017) Probing the complex architecture of multimodular carbohydrate-active enzymes using a combination of small angle X-ray scattering and X-ray crystallography protein-carbohydrate interactions. Methods Protoc 1588:239–253

    Google Scholar 

  • Davids T, Schmidt M, Böttcher D, Bornscheuer UT (2013) Strategies for the discovery and engineering of enzymes for biocatalysis. Curr Opin Chem Biol 17:215–220

    Article  CAS  PubMed  Google Scholar 

  • de Souza AR et al (2016) Engineering increased thermostability in the GH-10 endo-1, 4-β-xylanase from Thermoascus aurantiacus CBMAI 756. Int J Biol Macromol 93:20–26

    Article  PubMed  CAS  Google Scholar 

  • Diogo JA et al (2015) Development of a chimeric hemicellulase to enhance the xylose production and thermotolerance. Enzym Microb Technol 69:31–37

    Article  CAS  Google Scholar 

  • dos Santos CR, Cordeiro RL, Wong DW, Murakami MT (2015) Structural basis for xyloglucan specificity and α-d-Xyl p (1 → 6)-d-Glcp recognition at the − 1 subsite within the GH5 family. Biochemistry 54:1930–1942

    Article  PubMed  CAS  Google Scholar 

  • Duan C-J, Huang M-Y, Pang H, Zhao J, Wu C-X, Feng J-X (2017) Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes. Appl Microbiol Biotechnol 101:5723–5737

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S (2015) Bringing functions together with fusion enzymes—from nature’s inventions to biotechnological applications. Appl Microbiol Biotechnol 99:1545–1556

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119

    Article  CAS  PubMed  Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 438:449–453

    Article  CAS  PubMed  Google Scholar 

  • Espina G, Eley K, Pompidor G, Schneider TR, Crennell SJ, Danson MJ (2014) A novel β-xylosidase structure from Geobacillus thermoglucosidasius: the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds. Acta Crystallogr D Biol Crystallogr 70:1366–1374

    Article  CAS  PubMed  Google Scholar 

  • Fatima B, Hussain Z (2015) Xylose isomerases from thermotogales. J Anim Plant Sci 25(1):10–18

    Google Scholar 

  • Ferrara MC, Cobucci-Ponzano B, Carpentieri A, Henrissat B, Rossi M, Amoresano A, Moracci M (2014) The identification and molecular characterization of the first archaeal bifunctional exo-β-glucosidase/N-acetyl-β-glucosaminidase demonstrate that family GH116 is made of three functionally distinct subfamilies. Biochim Biophys Acta (BBA) (General Subjects) 1840:367–377

    Article  CAS  Google Scholar 

  • Foumani M, Vuong TV, MacCormick B, Master ER (2015) Enhanced polysaccharide binding and activity on linear β-glucans through addition of carbohydrate-binding modules to either terminus of a glucooligosaccharide oxidase. PLoS One 10:e0125398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan R, Jewett MC (2016) Evolution of translation initiation sequences using in vitro yeast ribosome display. Biotechnol Bioeng 113:1777–1786

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wakarchuk W (2014) Characterization of five β-glycoside hydrolases from Cellulomonas fimi ATCC 484. J Bacteriol 196:4103–4110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geisler-Lee J et al (2006) Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiol 140:946–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerday C, Glansdorff N (2007) Physiology and biochemistry of extremophiles. ASM Press, Washington

    Google Scholar 

  • Ghatge SS et al (2014) Characterization of modular bifunctional processive endoglucanase Cel5 from Hahella chejuensis KCTC 2396. Appl Microbiol Biotechnol 98:4421–4435

    Article  CAS  PubMed  Google Scholar 

  • Godoy AS, de Lima MZ, Camilo CM, Polikarpov I (2016) Crystal structure of a putative exo-β-1, 3-galactanase from Bifidobacterium bifidum S17. Acta Crystallogr Sect F Struct Biol Commun 72:288–293

    Article  CAS  Google Scholar 

  • Guerriero G, Hausman J-F, Strauss J, Ertan H, Siddiqui KS (2015) Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han N, Miao H, Ding J, Li J, Mu Y, Zhou J, Huang Z (2017a) Improving the thermostability of a fungal GH11 xylanase via site-directed mutagenesis guided by sequence and structural analysis. Biotechnol Biofuels 10:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y-B, Chen L-Q, Li Z, Tan Y-M, Feng Y, Yang G-Y (2017b) Structural insights into the broad substrate specificity of a novel endoglycoceramidase I belonging to a new subfamily of GH5 glycosidases. J Biol Chem 292:4789–4800

    Article  CAS  PubMed  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  CAS  PubMed  Google Scholar 

  • Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  • Hoffmam ZB et al (2016) Xylan-specific carbohydrate-binding module belonging to family 6 enhances the catalytic performance of a GH11 endo-xylanase. New Biotechnol 33:467–472

    Article  CAS  Google Scholar 

  • Horiya S, Bailey JK, Krauss IJ (2017) Directed evolution of glycopeptides using mRNA display. Methods Enzymol 597:83–141

    Article  PubMed  Google Scholar 

  • Huang Z, Liu X, Zhang S, Liu Z (2014) GH52 xylosidase from Geobacillus stearothermophilus: characterization and introduction of xylanase activity by site-directed mutagenesis of Tyr509. J Ind Microbiol Biotechnol 41:65–74

    Article  CAS  PubMed  Google Scholar 

  • Huy ND et al (2016) Characterization of a novel manganese dependent endoglucanase belongs in GH family 5 from Phanerochaete chrysosporium. J Biosci Bioeng 121:154–159

    Article  CAS  PubMed  Google Scholar 

  • Khan MIM, Sajjad M, Sadaf S, Zafar R, Niazi UH, Akhtar MW (2013) The nature of the carbohydrate binding module determines the catalytic efficiency of xylanase Z of Clostridium thermocellum. J Biotechnol 168:403–408

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Nong G, Rice JD, Gallo M, Preston JF, Altpeter F (2016) In planta production and characterization of a hyperthermostable GH10 xylanase in transgenic sugarcane. Plant Mol Biol 93:465–478

    Article  PubMed  CAS  Google Scholar 

  • Klenk C, Ehrenmann J, Schütz M, Plückthun A (2016) A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution. Sci Rep 6:21294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuuskeri J et al (2016) Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnol Biofuels 9:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee Y-E, Lowe S, Henrissat B, Zeikus JG (1993) Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J Bacteriol 175:5890–5898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuschner C, Antranikian G (1995) Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World J Microbiol Biotechnol 11:95–114

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yang X, Bao M, Wu Y, Yu W, Han F (2015) Family 13 carbohydrate-binding module of alginate lyase from Agarivorans sp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution. FEMS Microbiol Lett 362:fnv054

    PubMed  Google Scholar 

  • Lin J-L, Wagner JM, Alper HS (2017) Enabling tools for high-throughput detection of metabolites: metabolic engineering and directed evolution applications. Biotechnol Adv Manuscr. https://doi.org/10.1016/j.biotechadv.2017.07.005

    Google Scholar 

  • Liu S, Ding S (2016) Replacement of carbohydrate binding modules improves acetyl xylan esterase activity and its synergistic hydrolysis of different substrates with xylanase. BMC Biotechnol 16:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  PubMed  Google Scholar 

  • López-Mondéjar R, Zühlke D, Větrovský T, Becher D, Riedel K, Baldrian P (2016) Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels 9:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma F, Fischer M, Han Y, Withers SG, Feng Y, Yang G-Y (2016) Substrate engineering enabling fluorescence droplet entrapment for IVC-FACS-based ultrahigh-throughput screening. Anal Chem 88:8587–8595

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa T, Kaneko S, Yaoi K (2016) Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates. Appl Microbiol Biotechnol 100:8043–8051

    Article  CAS  PubMed  Google Scholar 

  • McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci USA 103:4765–4770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir BA, Mewalal R, Mizrachi E, Myburg AA, Cowan DA (2014) Recombinant hyperthermophilic enzyme expression in plants: a novel approach for lignocellulose digestion. Trends Biotechnol 32:281–289

    Article  CAS  PubMed  Google Scholar 

  • Montalvo-Rodriguez R, Haseltine C, Huess-LaRossa K, Clemente T, Soto S, Staswick P, Blum P (2000) Autohydrolysis of plant polysaccharides using transgenic hyperthermophilic enzymes. Biotechnol Bioeng 70:151–159

    Article  CAS  PubMed  Google Scholar 

  • Montella S, Ventorino V, Lombard V, Henrissat B, Pepe O, Faraco V (2017) Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Sci Rep 7:42623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison JM, Elshahed MS, Youssef N (2016) A multifunctional GH39 glycoside hydrolase from the anaerobic gut fungus Orpinomyces sp. strain C1A. PeerJ 4:e2289

    Article  PubMed  PubMed Central  Google Scholar 

  • Mir B, Myburg, A, Mizrachi E, Cowan DA (2017) In planta expression of hyperthermophilic enzymes as a strategy for accelerated lignocellulosic digestion. Sci Rep Manuscr (in press)

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597. https://doi.org/10.1016/j.rser.2009.10.003

    Article  CAS  Google Scholar 

  • Nisha M, Satyanarayana T (2016) Characteristics, protein engineering and applications of microbial thermostable pullulanase and pullulan hydrolases. Appl Microbiol Biotechnol 100:5661–5679

    Article  CAS  PubMed  Google Scholar 

  • Oliveira C, Carvalho V, Domingues L, Gama FM (2015) Recombinant CBM-fusion technology—applications overview. Biotechnol Adv 33:358–369

    Article  CAS  PubMed  Google Scholar 

  • Pan R, Hu Y, Long L, Wang J, Ding S (2016) Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22. Enzym Microb Technol 91:42–51

    Article  CAS  Google Scholar 

  • Pinard D et al (2015) Comparative analysis of plant carbohydrate active Enzymes and their role in xylogenesis. BMC Genom 16:402

    Article  CAS  Google Scholar 

  • Pires VM et al (2017) Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C. J Biol Chem M116:767541

    Google Scholar 

  • Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT (2017) Recent advances in directed evolution of stereoselective enzymes. In: Directed enzyme evolution: advances and applications. Springer International Publishing, pp 69–99. https://doi.org/10.1007/978-3-319-50413-1_3

  • Reetz MT, Carballeira JD, Peyralans J, Höbenreich H, Maichele A, Vogel A (2006) Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. Chem A Eur J 12:6031–6038

    Article  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Sainz-Polo MA, Valenzuela SV, González B, Pastor FJ, Sanz-Aparicio J (2014a) Structural analysis of glucuronoxylan-specific Xyn30D and its attached CBM35 domain gives insights into the role of modularity in specificity. J Biol Chem 289:31088–31101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sainz-Polo MÁ, Valenzuela SV, Pastor FJ, Sanz-Aparicio J (2014b) Crystallization and preliminary X-ray diffraction analysis of Xyn30D from Paenibacillus barcinonensis. Acta Crystallogr Sect F Struct Biol Commun 70:963–966

    Article  CAS  Google Scholar 

  • Sainz-Polo MA, González B, Menéndez M, Pastor FJ, Sanz-Aparicio J (2015) Exploring multimodularity in plant cell wall deconstruction: structural and functional analysis of Xyn10C containing the CBM22-1-CBM22-2 tandem. J Biol Chem M115:659300

    Google Scholar 

  • Sajjad M, Khan MIM, Akbar NS, Ahmad S, Ali I, Akhtar MW (2010) Enhanced expression and activity yields of Clostridium thermocellum xylanases without non-catalytic domains. J Biotechnol 145:38–42

    Article  CAS  PubMed  Google Scholar 

  • Schneider WDH et al (2016) Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass. Biotechnol Biofuels 9:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schückel J, Kračun SK, Willats WG (2016) High-throughput screening of carbohydrate-degrading enzymes using novel insoluble chromogenic substrate assay kits. J Vis Exp 115:e54286. https://doi.org/10.3791/54286

    Google Scholar 

  • Smart M, Huddy RJ, Cowan DA, Trindade M (2017) Liquid phase multiplex high-throughput screening of metagenomic libraries using p-nitrophenyl-linked substrates for accessory lignocellulosic enzymes metagenomics. Methods Protoc 1539:219–228

    Google Scholar 

  • Smolke CD (2009) Building outside of the box: iGEM and the BioBricks Foundation. Nat Biotechnol 27:1099–1102

    Article  CAS  PubMed  Google Scholar 

  • Solomon KV et al (2016) Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351:1192–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth Á et al (2016) Cloning, expression and biochemical characterization of endomannanases from Thermobifida species isolated from different niches. PLoS One 11:e0155769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Traxlmayr MW, Shusta EV (2017) Directed evolution of protein thermal stability using yeast surface display. Synth Antib Methods Protoc 1575:45–65

    Google Scholar 

  • Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5:567–573

    Article  CAS  PubMed  Google Scholar 

  • Turumtay H (2015) Cell wall engineering by heterologous expression of cell wall-degrading enzymes for better conversion of lignocellulosic biomass into biofuels. Bioenergy Res 8:1574–1588

    Article  CAS  Google Scholar 

  • Urbieta MS, Donati ER, Chan K-G, Shahar S, Sin LL, Goh KM (2015) Thermophiles in the genomic era: biodiversity, science, and applications. Biotechnol Adv 33:633–647

    Article  CAS  PubMed  Google Scholar 

  • Valadares F et al (2016) Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification. Biotechnol Biofuels 9:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valenzuela SV, Diaz P, Pastor FJ (2012) Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module. Appl Environ Microbiol 78:3923–3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venditto I et al (2015) Family 46 carbohydrate-binding modules contribute to the enzymatic hydrolysis of xyloglucan and β-1, 3–1, 4-glucans through distinct mechanisms. J Biol Chem 290:10572–10586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma AK, Goyal A (2014) In silico structural characterization and molecular docking studies of first glucuronoxylan-xylanohydrolase (Xyn30A) from family 30 glycosyl hydrolase (GH30) from Clostridium thermocellum. Mol Biol 48:278–286

    Article  CAS  Google Scholar 

  • Verma AK et al (2013) Overexpression, crystallization and preliminary X-ray crystallographic analysis of glucuronoxylan xylanohydrolase (Xyn30A) from Clostridium thermocellum. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:1440–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilanova C, Porcar M (2014) iGEM 2.0—refoundations for engineering biology. Nat Biotechnol 32:420–424

    Article  CAS  PubMed  Google Scholar 

  • Voutilainen SP, Nurmi-Rantala S, Penttilä M, Koivula A (2014) Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 98:2991–3001

    Article  CAS  PubMed  Google Scholar 

  • Walker JA et al (2015) Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Biotechnol Biofuels 8:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Dong D, Wang H, Müller K, Qin Y, Wang H, Wu W (2016a) Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 9:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Yu W, Han F (2016b) Expression and characterization of a cold-adapted, thermotolerant and denaturant-stable GH5 endoglucanase Celal_2753 that withstands boiling from the psychrophilic bacterium Cellulophaga algicola IC166T. Biotechnol Lett 38:285–290

    Article  CAS  PubMed  Google Scholar 

  • Xue X et al (2015) The N-terminal GH10 domain of a multimodular protein from Caldicellulosiruptor bescii is a versatile xylanase/β-glucanase that can degrade crystalline cellulose. Appl Environ Microbiol 81:3823–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi Z, Su X, Revindran V, Mackie RI, Cann I (2013) Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose. PLoS One 8:e84172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zang H et al (2015) A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production. Enzym Microb Technol 78:1–9

    Article  CAS  Google Scholar 

  • Yang Y et al (2015) A mechanism of glucose tolerance and stimulation of GH1 β-glucosidases. Sci Rep 5:17296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al. (2015) Subsite-specific contributions of different aromatic residues in the active site architecture of glycoside hydrolase family 12. Sci Rep 5:18357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H et al. (2017) Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01. Sci Rep 7:4431

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Research Foundation (South Africa) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don A. Cowan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by S. Albers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 13 kb)

792_2017_974_MOESM2_ESM.pdf

Online Resource 2 CAZyme domains identified from extremely thermophilic organisms proteomes using HMMER analysis (PDF 44 kb)

Supplementary material 3 (DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botha, J., Mizrachi, E., Myburg, A.A. et al. Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Extremophiles 22, 1–12 (2018). https://doi.org/10.1007/s00792-017-0974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-017-0974-7

Keywords

Navigation