Skip to main content
Log in

Pcal_1311, an alcohol dehydrogenase homologue from Pyrobaculum calidifontis, displays NADH-dependent high aldehyde reductase activity

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Genome sequence of Pyrobaculum calidifontis, a hyperthermophilic archaeon, harbors three open-reading frames annotated as alcohol dehydrogenases. One of them, Pcal_1311, does not display a significantly high homology with any of the characterized alcohol dehydrogenases. Highest homology of 38% was found with the characterized counterpart from Geobacillus stearothermophilus. To examine the biochemical properties of Pcal_1311, we have cloned and functionally expressed the gene in Escherichia coli. Purified recombinant Pcal_1311 catalyzed the NAD(H)-dependent oxidation of various alcohols and reduction of aldehydes, with a marked preference for substrates with functional group at the terminal carbon. Highest activity for the oxidation reaction (3 μmol min−1 mg−1) was found with 1,4-butanediol and for the reduction reaction (150 μmol min−1 mg−1) with glutaraldehyde. Both the oxidation and reduction activities increased with the increase in temperature up to 80 °C. Recombinant Pcal_1311 was highly stable and retained more than 90% activity even after incubation of 180 min at 90 °C. In addition to the thermostabilty, Pcal_1311 was highly stable in the presence of known denaturants including urea and guanidine hydrochloride. The high stability, particularly thermostability, and the NADH-dependent aldehyde reduction activity make Pcal_1311 a unique member in the alcohol dehydrogenase family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anbu P, So JS, Hur BK, Yun HS (2016) Organic solvent stable protease isolation and characterization from organic solvent tolerant strain of Lysinibacillus sphaericus PAP02. Biologia 71:972–979

    Article  CAS  Google Scholar 

  • Bottoms CA, Smith PE, Tanner JJ (2002) A structurally conserved water molecule in Rossmann dinucleotide-binding domain. Protein Sci 11:2125–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chohan SM, Rashid N (2013) TK1656, a thermostable L-asparaginase from Thermococcus kodakaraensis, exhibiting highest ever reported enzyme activity. J Biosci Bioeng 116:438–443

    Article  CAS  PubMed  Google Scholar 

  • Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282

    Article  CAS  Google Scholar 

  • El-Kabbani O, Carbone V, Darmanin C, Oka M, Mitschler A, Podjarny A, Schulze-Briese C, Chung RP (2005) Structure of aldehyde reductase holoenzyme in complex with the potent aldose reductase inhibitor fidarestat: implications for inhibitor binding and selectivity. J Med Chem 48:5536–5542

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Eisen JA, Salzberg SL (2000) Microbial genome sequencing. Nature 406:799–803

    Article  CAS  PubMed  Google Scholar 

  • Gharib G, Rashid N, Bashir Q, Gardner QA, Akhtar M, Imanaka T (2016) Pcal_1699, an extremely thermostable malate dehydrogenase from hyperthermophilic archaeon Pyrobaculum calidifontis. Extremophiles 20:57–67

    Article  CAS  PubMed  Google Scholar 

  • Goswami P, Chinnadayyala SSR, Chakraborty M, Kumar AK, Kakoti A (2013) An overview on alcohol oxidases and their potential applications. Appl Microbiol Biotechnol 97:4259–4275

    Article  CAS  PubMed  Google Scholar 

  • Guagliardi A, Martino M, Iaccarino I, De Rosa M, Rossi M, Bartolucci S (1996) Purification and characterization of the alcohol dehydrogenase from a novel strain of Bacillus stearothermophilus growing at 70 °C. Int J Biochem Cell Biol 28:239–246

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Khare SK (2009) Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology. Crit Rev Biotechnol 29:44–54

    Article  CAS  PubMed  Google Scholar 

  • Liliensiek AK, Cassidy J, Gucciardo G, Whitely C, Paradisi F (2013) Heterologous overexpression purification and characterisation of an alcohol dehydrogenase (ADH2) from Halobacterium sp. NRC-1. Mol Biotechnol 55:143–149

    Article  CAS  PubMed  Google Scholar 

  • Machielsen R, Uria RA, Kengen WM, Oost J (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily. Appl Environ Microbiol 72:233–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore CM, Minteer SD, Martin RS (2005) Microchip-based ethanol/oxygen biofuel cell. Lab Chip 5:218–225

    Article  CAS  PubMed  Google Scholar 

  • Nelson KE, Paulsen IT, Heidelberg JF, Fraser CM (2000) Status of genome projects for nonpathogenic bacteria and archaea. Nat Biotechnol 18:1049–1054

    Article  CAS  PubMed  Google Scholar 

  • Radianingtyas H, Wright PC (2003) Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 27:593–616

    Article  CAS  PubMed  Google Scholar 

  • Rashid N, Imanaka H, Kanai T, Fukui T, Atomi H, Imanaka T (2002) A novel candidate for the true fructose-16-bisphosphatase in archaea. J Biol Chem 277:30649–30655

    Article  CAS  PubMed  Google Scholar 

  • Rasool N, Rashid N, Iftikhar S, Akhtar M (2010) N-terminal deletion of Tk1689 a subtilisin-like serine protease from Thermococcus kodakaraensis copes with its cytotoxicity in Escherichia coli. J Biosci Bioeng 110:381–385

    Article  CAS  PubMed  Google Scholar 

  • Reid MF, Fewson CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13–56

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Kusakabe Y, Ito K, Yoshimoto T, Nakamura KT (2002) Crystal structure of formaldehyde dehydrogenase from Pseudomonas putida: the structural origin of the tightly bound cofactor in nicotinoprotein dehydrogenases. J Mol Biol 324:519–533

    Article  CAS  PubMed  Google Scholar 

  • Vitale A, Rosso F, Barbarisi A, Labella T, D’Auria S (2010) Properties and evolution of an alcohol dehydrogenase from the crenarchaeota Pyrobaculum aerophilum. Gene 46:26–31

    Article  Google Scholar 

  • Woodyer RD, Johannes TW, Zhao H (2006) Regeneration of cofactors for enzyme biocatalysis. In: Pandey A, Webb C, Soccol CS, Larroche C (eds) Enzyme technology, Asiatech Publishers Inc, New Delhi, pp 83–101

  • Ying X, Ma K (2011) Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon Thermococcus guaymasensis. J Bacteriol 12:3009–3019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naeem Rashid.

Additional information

Communicated by H. Atomi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, R., Rashid, N., Kanai, T. et al. Pcal_1311, an alcohol dehydrogenase homologue from Pyrobaculum calidifontis, displays NADH-dependent high aldehyde reductase activity. Extremophiles 21, 1101–1110 (2017). https://doi.org/10.1007/s00792-017-0970-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-017-0970-y

Keywords

Navigation