Skip to main content
Log in

Molecular cloning and expression analysis of major intrinsic protein gene in Chlamydomonas sp. ICE-L from Antarctica

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Major intrinsic proteins (MIPs) form channels facilitating the passive transport of water and other small polar molecules across membranes. In this study, the complete open reading frame (ORF) of CiMIP1 (GenBank ID KY316061) encoding one kind of MIPs in the Antarctic ice microalga Chlamydomonas sp. ICE-L is successfully cloned using RACE. In addition, the expression patterns of CiMIP1 gene under different conditions of temperature and salinity are determined by qRT-PCR. The ORF of CiMIP1 gene encodes 308 amino acids, and the deduced amino acid sequence shows 74% homology with Chlamydomonas reinhardtii CrMIP1 (GenBank number 159471952). Phylogenetic analysis reveals that algal MIPs are divided into seven groups, and it is speculated that CiMIP1 most likely belongs to the MIPD subfamily. In addition, we are surprised to find that a third NPA motif exists at the carboxy terminus of the target protein except for two highly conserved ones. Expression analysis shows that the transcriptional levels of CiMIP1 gene are upregulated under either lower temperature or higher temperature and high salinity. In summary, the results together have provide new insights into the newly discovered gene in green algae and lay the foundation for further studies on the adaptation mechanism of Chlamydomonas sp. ICE-L to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochem Biophys Acta 1840:1468–1481

    Article  CAS  PubMed  Google Scholar 

  • An M, Mou S, Zhang X, Ye N, Zheng Z, Cao S, Xu D, Fan X, Wang Y, Miao J (2013) Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. Bioresour Technol 134:151–157

    Article  CAS  PubMed  Google Scholar 

  • Anderberg H, Danielson J, Johanson U (2011) Algal MIPs, high diversity and conserved motifs. BMC Evol Biol 11:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderberg HI, Kjellbom P, Johanson U (2012) Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in the terrestrial plants. Front Plant Sci 3:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderca MI, Suga S, Furuichi T, Shimogawara K, Maeshima M, Muto S (2004) Functional identification of the glycerol transport activity of Chlamydomonas reinhardtii CrMIP1. Plant Cell Physiol 45(9):1313–1319

    Article  CAS  PubMed  Google Scholar 

  • Bansal A, Sankararamakrishnan R (2007) Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters. BMC Struct Biol 7:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci USA 103:269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert GP, Cavez D, Besserer A, Berny MC, Gilis D, Rooman M, Chaumont F (2012) A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers. Biochem J 445:101–111

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Duncan G, Agarkava I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangiliman J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, van Etten JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22(9):2943–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbrey JM, Agre P (2009) Discovery of the aquaporins and development of the field. Handb Exp Pharmacol 190:3–28

    Article  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequences alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels MJ, Mirkov TE, Chrispeels MJ (1994) The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol 106(4):1325–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ (1996) Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8(4):587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielson J, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plat Biol 8:1–15

    Article  Google Scholar 

  • Danielson JH, Johanson U (2010) Phylogeny of major intrinsic proteins. Adv Exp Med Biol 679:19–31

    Article  CAS  PubMed  Google Scholar 

  • Derellea E, Ferrz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynié S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piégu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, van de Peer Y, Moreauam H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103(31):11647–11652

    Article  Google Scholar 

  • Echevarria M, Windhager EE, Tate SS, Frindt G (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci USA 91:10997–11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the boorstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Gonen T, Walz T (2006) The structure of aquaporins. Q Rev Biophys 39:361–396

    Article  CAS  PubMed  Google Scholar 

  • Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J (1984) The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA clining. Cell 39:49–59

    Article  CAS  PubMed  Google Scholar 

  • Groot BL, Frigato T, Helms V, Grubmuller H (2003) The mechanism of proton exclusion in the aquaporin-1 water channel. Mol Biol 333:279–293

    Article  Google Scholar 

  • Gustavsson S, Lebrun AS, Nordén K, Chaumont F, Johanson U (2005) A novel plant major intrinsic protein in Physcomitrella patens most similar to bacteria glycerol channels. Plant Physiol 1:287–295

    Article  Google Scholar 

  • Heymann JB, Engel A (2000) Structural clues in the sequences of the aquaporins. J Mol Biol 295:1039–1053

    Article  CAS  PubMed  Google Scholar 

  • Horsefield R, Nordén K, FeIIert M, Backmark A, Törnroth-HorsefieId S, Van S, Anke CT, Kvassman J, KjeIIbon P, Johanson U (2008) High-resolution x-ray structure of human aquaporin 5. Proc Natl Acad Sci USA 105(36):13327–13332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hove RM, Bhave M (2011) Plant aquaporins with non-aqua functions: deciphering the signature sequences. Plant Mol Biol 75:413–430

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Kuwahara M, GuY Kageyama Y, Tohsaka A, Suuki F, Marumo F, Sasaki S (1997) Cloning the functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol and urea. J Biol Chem 272:20782–20786

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Kondo S, Hara S, Morishita Y (2011) The evolutionary aspects of aquaporin family. Am J Physiol Regul Intergr Comp Physiol 300:R566–R576

    Article  CAS  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson I, Karllsson M, Johanson U, Larsson C (2000) The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465:324–342

    Article  CAS  PubMed  Google Scholar 

  • Khabudaev KV, Petrova DP, Grachev MA, Likhoshway YV (2014) A new subfamily LIP of the major intrinsic proteins. BMC Genom 15:173

    Article  Google Scholar 

  • Li G, Peng Y, Yu X, Zhang M, Cai W, Sun W, Su W (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165(18):1879–1888

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Ludewig U, Gassert B, Frommer WB, von Wiren N (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133(3):1220–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Huang X, Wang X, Zhang X, Li G (2006) Phylogenetic studies on two strains of Antarctic ice algae based on morphological and molecular characteristics. Phycologia 45:190–198

    Article  Google Scholar 

  • Liu C, Wu G, Huang X, Liu S, Cong B (2012) Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation. Extremophiles 16:419–425

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wang X, Wang X, Sun C (2016) Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis. Extremophiles 20:437–450

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PRC and the 2−△△CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loque D, Ludewig U, Yuan L, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137(2):671–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano N (2006) A silicon transporter in rice. Nature 440(7048):688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Naoki Y, Namiki M, Xu X, Su Y, Steve PM, Zhao F (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105(29):9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu L, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau H, Chen C, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, ZimmerSL Allmer J, Balk J, Bisova J, Chen C, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang Y, Jhaveri J, Luo Y, Martínez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2010) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250

    Article  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao F, Ma J (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62(12):4391–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou S, Zhang X, Ye N, Dong M, Liang C, Liang Q, Miao J, Xu D, Zheng Z (2012) Cloning and expression analysis of two different LhcSR genes involved in stress adaptation in an Antarctic microalga, Chlamydomonas sp. ICE-L. Extremophiles 16:193–203

    Article  CAS  PubMed  Google Scholar 

  • Mou S, Zhang X, Miao J, Zheng Z, Xu D, Ye N (2015) Reference genes for gene expression normalization in Chlamydomonas sp. IEC-L by quantitative real-time RT-PCR. Plant Biochem Biotechnol 24(3):276–282

    Article  CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Age P, Eymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:481–486

    Google Scholar 

  • Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otiliar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104(18):7705–7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prochnik SE, Umen J, Nedeclu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kou A, Mitros T, Fritz-Laylin LK, Hellsten U, Champsan J, Oleg Simakov, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shripo H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Krikt D, Rokhsar DS (2010) Genomic analysis of organismal complexity in the multicellular green algae Volvox carteri. Science 329(5988):223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori R (eds) Culture and collections of algae. Proceedings of US–Japan Conference, Hakone, Japan, pp 63–95

  • Qian W, Wang L, Wang F, Gu Y, Chen W, Jin L, Chen L, Chen C, Li N (2016) Cloning of an aquaporin SfLIP from Sargassum fusiforme and its expression analysis under fresh-water immersion. Modern Agric Sci Technol 11:228–231

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Soto G, Alleva K, Amodeo G, Muschietti J, Ayub ND (2012) New insight into the evolution of aquaporins from flowering plants and vertebrates: orthologous identification and functional transfer is possible. Gene 503:165–176

    Article  CAS  PubMed  Google Scholar 

  • Stevens JE (1995) The Antarctic pack-ice encosystem. Bioscience 45:128–132

    Article  Google Scholar 

  • Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport of a glycerol-conducting through the AQP1 water channel. Nature 414:872–878

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Bio Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Thmas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophies. Science 295:641–644

    Article  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plan Physil 135:1059–1068

    Article  CAS  Google Scholar 

  • Wang W, Wang C, Chen H, Liu H, Wang C, Zhang X, Wang Y, Wang K (2013) Preliminary bioinformatics analysis of aquaporin sequences available in cotton. Acta Agriculturae Zhejiangensis 25:14–20

    Google Scholar 

  • Yang J, Kong F, Li C, Sun M, Zhao H, Li N, Mao Y (2016) Cloning and expression analysis of PyAQP1 in Pyropia yezoensis. Period Ocean Univ China 46(8):79–86

    Google Scholar 

  • Yusuke T, Shinichi U, Daisuke H, Nobuyuki K, Michio K, Sei S, Takahide T (2005) Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. FEBS Lett 579(20):4417–4422

    Article  Google Scholar 

  • Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414

    Article  CAS  PubMed  Google Scholar 

  • Zardoya R, Villalba S (2001) A phylogenetic framework for the aquaporin family in eukaryotes. Mol. Evol 52:391–404

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (41576187), Basic Scientific Fund for National Public Research Institutes of China (2016Q10), Key Research and Development Program of Shandong Province (2016ZDJS06A03), Public Science and Technology Research Funds Projects of Ocean (201405015), Science and Technology Planning Project of Shandong Province (2014GHY115003), Major Projects of Independent Innovation Achievements Transformation in Shandong Province (2014ZZCX06202), Qingdao National Laboratory for Marine Science and Technology (2015ASKJ02), and Qingdao Entrepreneurship and Innovation Pioneers Program (15-10-3-15-(44)-zch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlai Miao.

Additional information

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., An, M., Qu, C. et al. Molecular cloning and expression analysis of major intrinsic protein gene in Chlamydomonas sp. ICE-L from Antarctica. Extremophiles 21, 817–827 (2017). https://doi.org/10.1007/s00792-017-0945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-017-0945-z

Keywords

Navigation