Skip to main content

Advertisement

Log in

Biocontrol activity of a cold-adapted yeast from Tibet against gray mold in cherry tomato and its action mechanism

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Cold-adapted biocontrol yeast was selected from four yeast isolates from Tibet against gray mold of cherry tomato in cold storage. The strain numbered LB2 showed the best biocontrol activity and identified as Cryptococcus laurentii. Competition for nutrient, space, and induced fruit resistance was also its antagonistic mechanism. Compared with C. laurentii from sea-level place, the reason why LB2 had a better biocontrol activity was studied. More trehalose and proline in cell of LB2 made it exhibit a better cellular activity at low temperature, such as higher population dynamics in the wounds of cherry tomato and more biocontrol-related enzyme secretion, chitinase and β-glucanase. The better oxidative stress tolerance was another characteristic of LB2. Maybe because of the ideal culture condition, there was no obvious difference between these two yeasts in the growth in vitro test at low temperature. Although the same phenomenon existed in the low pH stress test, LB2 still had higher cell concentration under this stress. Comparative transcriptomics method was also applied to analyze the cell activity of LB2 and C. laurentii at different temperatures. The results showed that more active response in the intracellular structure and intracellular metabolic process to cold temperature made LB2 had a better activity. The present study indicated a possibility to select cold-adapted biocontrol yeast from Tibet and also showed its primary action mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Banani H, Spadaro D, Zhang D, Matic S, Garibaldi A, Gullino ML (2015) Postharvest application of a novel chitinase cloned from Metschnikowia fructicola and overexpressed in Pichia pastoris to control brown rot of peaches. Int J Food Microbiol 199:54–61. doi:10.1016/j.ijfoodmicro.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  • Besil N, Pérez-Parada A, Cesio V, Varela P, Rivas F, Heinzen H (2016) Degradation of imazalil, orthophenylphenol and pyrimethanil in Clementine mandarins under conventional postharvest industrial conditions at 4°C. Food Chem 194:1132–1137. doi:10.1016/j.foodchem.2015.08.111

    Article  CAS  PubMed  Google Scholar 

  • Broy S, Chen C, Hoffmann T, Brock NL, Nau-Wagner G, Jebbar M, Smits SHJ, Dickschat JS, Bremer E (2015) Abiotic stress protection by ecologically abundant dimethylsulfoniopropionate and its natural and synthetic derivatives: insights from Bacillus subtilis. Environ Microbiol 17:2362–2378. doi:10.1111/1462-2920.12698

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li B, Qin G, Tian S (2015) Mechanism of H2O2-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis. Int J Food Microbiol 193:152–158. doi:10.1016/j.ijfoodmicro.2014.10.025

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Sheng J, Li S, Nie Y, Zhao J, Zhu Z, Wang Z, Tang X (2015) The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 101:88–95. doi:10.1016/j.postharvbio.2014.12.001

    Article  CAS  Google Scholar 

  • Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145. doi:10.1016/j.postharvbio.2008.11.009

    Article  Google Scholar 

  • Dunlap CA, Evans KO, Theelen B, Boekhout T, Schisler DA (2007) Osmotic shock tolerance and membrane fluidity of cold-adapted Cryptococcus flavescens OH 182.9, previously reported as C. nodaensis, a biocontrol agent of Fusarium head blight. FEMS Yeast Res 7:449–458. doi:10.1111/j.1567-1364.2006.00193.x

    Article  CAS  PubMed  Google Scholar 

  • El Ghaouth A, Wilson CL, Wisniewski M (2003) Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathology 93:344–348. doi:10.1094/PHYTO.2003.93.3.344

    Article  PubMed  Google Scholar 

  • Fagundes C, Pérez-Gago MB, Monteiro AR, Palou L (2013) Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. Int J Food Microbiol 166:391–398. doi:10.1016/j.ijfoodmicro.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  • Fagundes C, Palou L, Monteiro AR, Pérez-Gago MB (2014) Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biol Technol 92:1–8. doi:10.1016/j.postharvbio.2014.01.006

    Article  CAS  Google Scholar 

  • Fagundes C, Moraes K, Pérez-Gago MB, Palou L, Maraschin M, Monteiro AR (2015) Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biol Technol 109:73–81. doi:10.1016/j.postharvbio.2015.05.017

    Article  Google Scholar 

  • Fu D, Zeng L, Zheng X, Yu T (2015) Effect of β-glucan on stress tolerances and biocontrol efficacy of Cryptococcus laurentii against Penicillium expansum in pear fruit. Biocontrol 60:669–679. doi:10.1007/s10526-015-9670-7

    Article  CAS  Google Scholar 

  • Guo J, Fang W, Lu H, Zhu R, Lu L, Zheng X, Yu T (2014) Inhibition of green mold disease in mandarins by preventive applications of methyl jasmonate and antagonistic yeast Cryptococcus laurentii. Postharvest Biol Technol 88:72–78. doi:10.1016/j.postharvbio.2013.09.008

    Article  CAS  Google Scholar 

  • Hernández-Montiel LG, Ochoa JL, Troyo-Diéguez E, Larralde-Corona CP (2010) Biocontrol of postharvest blue mold (Penicillium italicum Wehmer) on Mexican lime by marine and citrus Debaryomyces hansenii isolates. Postharvest Biol Technol 56:181–187. doi:10.1016/j.postharvbio.2009.12.010

    Article  Google Scholar 

  • Hoff KJ (2009) The effect of sequencing errors on metagenomic gene prediction. BMC Genomics. doi:10.1186/1471-2164-10-520

    PubMed  PubMed Central  Google Scholar 

  • Kaoud HA (2014) Alternative methods for the control of Tuta absoluta. GJMAS J 2:41–46. doi:10.1111/jam.12495

    Google Scholar 

  • Khunnamwong P, Limtong S (2016) Yamadazyma endophytica f.a. sp nov., an ascomycetous yeast species isolated from leaf tissue. Int J Syst Evol Microbiol 66:2717–2723. doi:10.1099/ijsem.0.001113

    Article  CAS  Google Scholar 

  • Li C, Zhang H, Yang Q, Komla MG, Zhang X, Zhu S (2014) Ascorbic acid enhances oxidative stress tolerance and biological control efficacy of Pichia caribbica against postharvest blue mold decay of apples. J Agric Food Chem 62:7612–7621. doi:10.1021/jf501984n

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wisniewski M, Droby S, Tian S, Hershkovitz V, Tworkoski T (2011) Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola. FEMS Microbiol Ecol 76:145–155. doi:10.1111/j.1574-6941.2010.01037.x

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wisniewski M, Droby S, Norelli J, Hershkovitz V, Tian S, Farrell R (2012) Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiol Ecol 80:578–590. doi:10.1111/j.1574-6941.2012.01324.x

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sui Y, Wisniewski M, Droby S, Liu Y (2013) Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167:153–160. doi:10.1016/j.ijfoodmicro.2013.09.004

    Article  PubMed  Google Scholar 

  • Lu H, Lu L, Zeng L, Fu D, Xiang H, Yu T, Zheng X (2014a) Effect of chitin on the antagonistic activity of Rhodosporidium paludigenum against Penicillium expansum in apple fruit. Postharvest Biol Technol 92:9–15. doi:10.1016/j.postharvbio.2014.01.009

    Article  CAS  Google Scholar 

  • Lu L, Liu Y, Yang J, Azat R, Yu T, Zheng X (2014b) Quaternary chitosan oligomers enhance resistance and biocontrol efficacy of Rhodosporidium paludigenum to green mold in satsuma orange. Carbohydr Polym 113:174–181. doi:10.1016/j.carbpol.2014.06.077

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Wan B, Feng S, Shao Y (2013) Biocontrol of postharvest anthracnose of mango fruit with Debaryomyces nepalensis and effects on storage quality and postharvest physiology. J Food Sci. doi:10.1111/1750-3841.13087

    Google Scholar 

  • Lutz MC, Lopes CA, Sosa MC, Sangorrín MP (2012) A new improved strategy for the selection of cold-adapted antagonist yeasts to control postharvest pear diseases. Biocontrol Sci Technol 22:1465–1483. doi:10.1080/09583157.2012.735223

    Article  Google Scholar 

  • Manso T, Nunes C (2011) Metschnikowia andauensis as a new biocontrol agent of fruit postharvest diseases. Postharvest Biol Technol 61:64–71. doi:10.1016/j.postharvbio.2011.02.004

    Article  Google Scholar 

  • Momose Y, Hirayama K, Itoh K (2008) Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 94:165–171. doi:10.1007/s10482-008-9222-6

    CAS  Google Scholar 

  • Nally MC, Pesce VM, Maturano YP, Rodriguez Assaf LA, Toro ME, Castellanos de Figueroa LI, Vazquez F (2015) Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots. Int J Food Microbiol 204:91–100. doi:10.1016/j.ijfoodmicro.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  • Nunes CA (2011) Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133:181–196. doi:10.1007/s10658-011-9919-7

    Article  Google Scholar 

  • Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92. doi:10.1016/j.fm.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652. doi:10.1093/bioinformatics/btg034

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Xiao H, Xue C, Yu Z, Yang R, Cai Z, Si L (2015) Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol Technol 100:160–167. doi:10.1016/j.postharvbio.2014.09.010

    Article  CAS  Google Scholar 

  • Robiglio A, Sosa MC, Lutz MC, Lopes CA, Sangorrín MP (2011) Yeast biocontrol of fungal spoilage of pears stored at low temperature. Int J Food Microbiol 147:211–216. doi:10.1016/j.ijfoodmicro.2011.04.007

    Article  PubMed  Google Scholar 

  • Romanazzi G, Lichter A, Gabler FM, Smilanick JL (2012) Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol Technol 63:141–147. doi:10.1016/j.postharvbio.2011.06.013

    Article  CAS  Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221. doi:10.1016/j.biocontrol.2009.05.001

    Article  Google Scholar 

  • Spadaro D, Droby S (2016) Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol 47:39–49. doi:10.1016/j.tifs.2015.11.003

    Article  CAS  Google Scholar 

  • Spadaro D, Lorè A, Garibaldi A, Gullino ML (2013) A new strain of Metschnikowia fructicola for postharvest control of Penicillium expansum and patulin accumulation on four cultivars of apple. Postharvest Biol Technol 75:1–8

    Article  CAS  Google Scholar 

  • Sugar D, Basile SR (2011) Orchard calcium and fungicide treatments mitigate effects of delayed postharvest fungicide applications for control of postharvest decay of pear fruit. Postharvest Biol Technol 60:52–56. doi:10.1016/j.postharvbio.2010.11.007

    Article  CAS  Google Scholar 

  • Sui Y, Liu J, Wisniewski M, Droby S, Norelli J, Hershkovitz V (2012) Pretreatment of the yeast antagonist, Candida oleophila, with glycine betaine increases oxidative stress tolerance in the microenvironment of apple wounds. Int J Food Microbiol 157:45–51. doi:10.1016/j.ijfoodmicro.2012.04.01010.1111/j.1574-6941.2012.01324.x

    Article  CAS  PubMed  Google Scholar 

  • Sui Y, Wisniewski M, Droby S, Liu J (2015) Responses of yeast biocontrol agents to environmental stress. Appl Environ Microbiol 81:2968–2975. doi:10.1128/AEM.04203-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolaini V, Zjalic S, Reverberi M, Fanelli C, Fabbri AA, Del Fiore A, De Rossi P, Ricelli A (2010) Lentinula edodes enhances the biocontrol activity of Cryptococcus laurentii against Penicillium expansum contamination and patulin production in apple fruits. Int J Food Microbiol 138:243–249. doi:10.1016/j.ijfoodmicro.2010.01.044

    Article  CAS  PubMed  Google Scholar 

  • Trevisol ETV, Panek AD, De Mesquita JF, Eleutherio ECA (2014) Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation. Biochim Biophys Acta Gen Subj 1840:1646–1650. doi:10.1016/j.bbagen.2013.12.010

    Article  CAS  Google Scholar 

  • Vero S, Garmendia G, Gonzalez MB, Bentancur O, Wisniewski M (2013) Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica). FEMS Yeast Res 13:189–199. doi:10.1111/1567-1364.12021

    Article  CAS  PubMed  Google Scholar 

  • Vilanova L, Wisniewski M, Norelli J, Viñas I, Torres R, Usall J, Phillips J, Droby S, Teixidó N (2014) Transcriptomic profiling of apple in response to inoculation with a pathogen (Penicillium expansum) and a non-pathogen (Penicillium digitatum). Plant Mol Biol Rep 32:566–583. doi:10.1007/s11105-013-0676-y

    Article  CAS  Google Scholar 

  • Wang YS, Wang ZY (2012) Sodium citrate induces apoptosis in biocontrol yeast Cryptococcus laurentii. J Appl Microbiol 113:135–142. doi:10.1111/j.1365-2672.2012.05312.x

    Article  CAS  PubMed  Google Scholar 

  • Wang YF, Wang P, Xia JD, Yu T, Lou BG, Wang J, Zheng XD (2010a) Effect of water activity on stress tolerance and biocontrol activity in antagonistic yeast Rhodosporidium paludigenum. Int J Food Microbiol 143:103–108. doi:10.1016/j.ijfoodmicro.2010.07.035

    Article  CAS  PubMed  Google Scholar 

  • Wang YF, Yu T, Xia JD, Yu DS, Wang J, Zheng XD (2010b) Biocontrol of postharvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenum. Biol Control 53:178–182. doi:10.1016/j.biocontrol.2010.01.002

    Article  Google Scholar 

  • Wang X, Wang L, Wang J, Jin P, Liu H, Zheng Y (2014) Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit. PLoS One 9:3–10. doi:10.1371/journal.pone.0112494

    Google Scholar 

  • Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S (2008) Expressed sequence tag analysis of the response of apple (Malus × domestica “Royal Gala”) to low temperature and water deficit. Physiol Plant 133:298–317. doi:10.1111/j.1399-3054.2008.01063.x

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Wang H, Zhang H, Zhang X, Apaliya MT, Zheng X, Mahunu GK (2017) Effect of Yarrowia lipolytica on postharvest decay of grapes caused by Talaromyces rugulosus and the protein expression profile of T. rugulosus. Postharvest Biol Technol 126:15–22. doi:10.1016/j.postharvbio.2016.11.015

    Article  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297. doi:10.1093/nar/gkl031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S-M, Lee YH (2015) Genes involved in nutrient competition by Pseudomonas putida JBC17 to suppress green mold in postharvest satsuma mandarin. J Basic Microbiol 55:898–906. doi:10.1002/jobm.201400792

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Wu PG, Qi JJ, Zheng XD, Jiang F, Zhan X (2006) Improved control of postharvest blue mold rot in pear fruit by a combination of Cryptococcus laurentii and gibberellic acid. Biol Control 39:128–134. doi:10.1016/j.biocontrol.2006.05.008

    Article  CAS  Google Scholar 

  • Yu T, Yu C, Lu HP, Zunun M, Chen FX, Zhou T, Sheng K, Zheng XD (2012) Effect of Cryptococcus laurentii and calcium chloride on control of Penicillium expansum and Botrytis cinerea infections in pear fruit. Biol Control 61:169–175. doi:10.1016/j.biocontrol.2012.01.012

    Article  CAS  Google Scholar 

  • Zeng L, Yu C, Fu D, Lu H, Zhu R, Lu L, Zheng X, Yu T (2015) Improvement in the effectiveness of Cryptococcus laurentii to control postharvest blue mold of pear by its culture in β-glucan amended nutrient broth. Postharvest Biol Technol 104:26–32. doi:10.1016/j.postharvbio.2015.03.005

    Article  CAS  Google Scholar 

  • Zhang HY, Zheng XD, Xi YF (2005) Biological control of postharvest blue mold of oranges by Cryptococcus laurentii (Kufferath) Skinner. Biocontrol 50:331–342. doi:10.1007/s10526-004-0452-x

    Article  Google Scholar 

  • Zhang HY, Zheng XD, Yu T (2007) Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control 18:287–291. doi:10.1016/j.foodcont.2005.10.007

    Article  CAS  Google Scholar 

  • Zhang C, Chen K, Wang G (2013a) Combination of the biocontrol yeast Cryptococcus laurentii with UV-C treatment for control of postharvest diseases of tomato fruit. Biocontrol 58:269–281. doi:10.1007/s10526-012-9477-8

    Article  Google Scholar 

  • Zhang H, Liu Z, Xu B, Chen K, Yang Q, Zhang Q (2013b) Burdock fructooligosaccharide enhances biocontrol of Rhodotorula mucilaginosa to postharvest decay of peaches. Carbohydr Polym 98:366–371. doi:10.1016/j.carbpol.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sun Y, Yang Q, Chen L, Li W, Zhang H (2015) Control of postharvest black rot caused by Alternaria alternata in strawberries by the combination of Cryptococcus laurentii and Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester. Biol Control 90:96–101. doi:10.1016/j.biocontrol.2015.05.018

    Article  CAS  Google Scholar 

  • Zhang Q, Yong D, Zhang Y, Shi X, Li B, Li G, Liang W, Wang C (2016) Streptomyces rochei A-1 induces resistance and defense-related responses against Botryosphaeria dothidea in apple fruit during storage. Postharvest Biol Technol 115:30–37. doi:10.1016/j.postharvbio.2015.12.013

    Article  CAS  Google Scholar 

  • Zhu Z, Tian S (2012) Resistant responses of tomato fruit treated with exogenous methyl jasmonate to Botrytis cinerea infection. Sci Hortic (Amsterdam) 142:38–43. doi:10.1016/j.scienta.2012.05.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (3157100632) and the China Scholarship Council (CSC). Thank you to Dr. Charles Wilson from World Food Preservation Center LLC (Shepherdstown, USA) for his advice in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zheng.

Additional information

Communicated by A. Driessen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Wisniewski, M.E., Abdelfattah, A. et al. Biocontrol activity of a cold-adapted yeast from Tibet against gray mold in cherry tomato and its action mechanism. Extremophiles 21, 789–803 (2017). https://doi.org/10.1007/s00792-017-0943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-017-0943-1

Keywords

Navigation