Skip to main content
Log in

Microbial community analysis of pH 4 thermal springs in Yellowstone National Park

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The pH of the majority of thermal springs in Yellowstone National Park (YNP) is from 1 to 3 and 6 to 10; relatively few springs (~5%) have a pH range of 4–5. We used 16S rRNA gene pyrosequencing to investigate microbial communities sampled from four pH 4 thermal springs collected from four regions of YNP that differed in their fluid temperature and geochemistry. Our results revealed that the composition of bacterial communities varied among the sites, despite sharing similar pH values. The taxonomic composition and metabolic functional potential of the site with the lowest temperature (55 °C), a thermal spring from the Seven Mile Hole (SMH) area, were further investigated using shotgun metagenome sequencing. The taxonomic classification, based on 372 Mbp of unassembled metagenomic reads, indicated that this community included a high proportion of Chloroflexi, Bacteroidetes, Proteobacteria, and Firmicutes. Functional comparison with other YNP thermal spring metagenomes indicated that the SMH metagenome was enriched in genes related to energy production and conversion, transcription, and carbohydrate transport. Analysis of genes involved in nitrogen metabolism revealed assimilatory and dissimilatory nitrate reduction pathways, whereas the majority of genes involved in sulfur metabolism were related to the reduction of sulfate to adenylylsulfate, sulfite, and H2S. Given that pH 4 thermal springs are relatively less common in YNP and thermal areas worldwide, they may harbor novel microbiota and the communities that inhabit them deserve further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aditiawati P, Yohandini H, Madayanti F, Akhmaloka (2009) Microbial diversity of acidic hot spring (Kawah Hujan B) in geothermal field of Kamojang area, West Java-Indonesia. Open Microbiol J 3:58–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aiken GR (1992) Chloride interference in the analysis of dissolved organic carbon by the wet oxidation method. Environ Sci Technol 26:2435–2439

    Article  CAS  Google Scholar 

  • Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243

    Article  CAS  PubMed  Google Scholar 

  • APHA (1985) Method 428C. Methylene blue method for sulfide. In: Standard methods for the examination of water and wastewater, 14th edn. American Public Health Association, pp 403–405

  • Boyd ES, Hamilton TL, Spear JR, Lavin M, Peters JW (2010) [FeFe]-hydrogenase in Yellowstone National Park: evidence for dispersal limitation and phylogenetic niche conservatism. ISME J 4:1485–1495

    Article  PubMed  Google Scholar 

  • Boyd ES, Hamilton TL, Wang J, He L, Zhang CL (2013) The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity. Front Microbiol 4:62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brock TD (1971) Bimodal distribution of pH values of thermal springs of the world. Geol Soc Am Bull 82:1393–1394

    Article  CAS  Google Scholar 

  • Brock T, Brock K, Belly R, Weiss R (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68

    CAS  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole JK, Peacock JP, Dodsworth JA, Williams AJ, Thompson DB, Dong H, Wu G, Hedlund BP (2013) Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J 7:718–729

    Article  CAS  PubMed  Google Scholar 

  • Colman DR, Thomas R, Maas KR, Takacs-Vesbach CD (2015) Detection and analysis of elusive members of a novel and diverse archaeal community within a thermal spring streamer consortium. Extremophiles 19:307–313

    Article  PubMed  Google Scholar 

  • de la Torre JR, Walker CB, Ingalls AE, Konneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818

    Article  PubMed  Google Scholar 

  • Deppenmeier U (2002) Redox-driven proton translocation in methanogenic Archaea. Cell Mol Life Sci 59:1513–1533

    Article  CAS  PubMed  Google Scholar 

  • Dequiedt S, Thioulouse J, Jolivet C, Saby N, Lelievre M, Maron PA, Martin MP, Prévost-Bouré NC, Toutain B, Arrouays D (2009) Biogeographical patterns of soil bacterial communities. Environ Microbiol Rep 1:251–255

    Article  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genom 13:162

    Article  CAS  Google Scholar 

  • Drobner E, Huber H, Rachel R, Stetter KO (1992) Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol 157:213–217

    Article  CAS  PubMed  Google Scholar 

  • Dunfield PF, Tamas I, Lee KC, Morgan XC, McDonald IR, Stott MB (2012) Electing a candidate: a speculative history of the bacterial phylum OP10. Environ Microbiol 14:3069–3080

    Article  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Engel AS, Johnson LR, Porter ML (2013) Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser Field, Chile. FEMS Microbiol Ecol 83:745–756

    Article  CAS  PubMed  Google Scholar 

  • Everroad RC, Otaki H, Matsuura K, Haruta S (2012) Diversification of bacterial community composition along a temperature gradient at a thermal spring. Microbes Environ 27:374–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Fournier R (1989) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu Rev Earth Planet Sci 17:13–53

    Article  CAS  Google Scholar 

  • Fournier RO (2005) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. In: Inskeep WP, TR M (eds) Geothermal biology and geochemistry in Yellowstone National Park. Thermal Biology Institute, Montana State University, Bozeman, pp 4–30

  • Fournier RO, Weltman U, Counce D, White L, Janik C (2002) Results of weekly chemical and isotopic monitoring of selected springs in Norris Geyser Basin, Yellowstone National Park. US Geological Survey

  • Garcia-Horsman JA, Barquera B, Rumbley J, Ma J, Gennis RB (1994) The superfamily of heme-copper respiratory oxidases. J Bacteriol 176:5587–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F (2010) Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc 2010:pdb prot5368

  • Gonzalez P, Correia C, Moura I, Brondino C, Moura J (2006) Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J Inorg Biochem 100:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Article  Google Scholar 

  • Guo Q, Kirk Nordstrom D, Blaine McCleskey R (2014) Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems. J Volcanol Geoth Res 288:94–104

    Article  CAS  Google Scholar 

  • Hall JR, Mitchell KR, Jackson-Weaver O, Kooser AS, Cron BR, Crossey LJ, Takacs-Vesbach CD (2008) Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol 74:4910–4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton TL, Vogl K, Bryant DA, Boyd ES, Peters JW (2012) Environmental constraints defining the distribution, composition, and evolution of chlorophototrophs in thermal features of Yellowstone National Park. Geobiology 10:236–249

    Article  CAS  PubMed  Google Scholar 

  • Holloway JM, Nordstrom DK, Bohlke JK, McCleskey RB, Ball JW (2011) Ammonium in thermal waters of Yellowstone National Park: processes affecting speciation and isotope fractionation. Geochim Cosmochim Acta 75:4611–4636

    Article  CAS  Google Scholar 

  • Huber R, Stetter KO (2001) Aquificales. In: eLS. Wiley, New York

  • Hurwitz S, Evans W, Lowenstern J, Bergfeld D, Werner C, Heasler H, Jaworowski C (2007) Extensive hydrothermal rock alteration in a low pH, steam-heated environment: Hot Springs Basin, Yellowstone National Park. In: Proceedings of the water–rock interaction symposium-12, Kunming, pp 81–85

  • Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, Jennings R, Fouke BW, Reysenbach AL, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5:e9773

    Article  PubMed  PubMed Central  Google Scholar 

  • Inskeep WP, Jay ZJ, Herrgard MJ, Kozubal MA, Rusch DB, Tringe SG, Macur RE, Jennings R, Boyd ES, Spear JR, Roberto FF (2013a) Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate Linkages between metabolic potential and geochemistry. Front Microbiol 4:95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inskeep WP, Jay ZJ, Tringe SG, Herrgard MJ, Rusch DB (2013b) The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front Microbiol 4:67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh T, K-i Suzuki, Sanchez PC, Nakase T (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542

    Article  CAS  PubMed  Google Scholar 

  • Jimenez DJ, Andreote FD, Chaves D, Montana JS, Osorio-Forero C, Junca H, Zambrano MM, Baena S (2012) Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes. PLoS One 7:e52069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klatt CG, Wood JM, Rusch DB, Bateson MM, Hamamura N, Heidelberg JF, Grossman AR, Bhaya D, Cohan FM, Kuhl M, Bryant DA, Ward DM (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J 5:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT (2003) Anoxygenic phototrophic bacteria from extreme environments. Photosynth Res 76:157–171

    Article  CAS  PubMed  Google Scholar 

  • Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2012) Cluster: cluster analysis basics and extensions. R Package version 1:56

    Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, Chen IM, Grechkin Y, Dubchak I, Anderson I, Lykidis A, Mavromatis K, Hugenholtz P, Kyrpides NC (2008) IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 36:D534–D538

    Article  CAS  PubMed  Google Scholar 

  • McCleskey RB, Ball JW, Nordstrom DK, Holloway JM, Taylor HE (2005) Water-chemistry data for selected hot springs, geysers, and streams in Yellowstone National Park, Wyoming 2001–2002. US Geological Survey Open-File Report 2004-1316

  • Meyer B, Kuever J (2008) Homology modeling of dissimilatory APS reductases (AprBA) of sulfur-oxidizing and sulfate-reducing prokaryotes. PLoS One 3:e1514

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer-Dombard DR, Shock EL, Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227

    Article  Google Scholar 

  • Meyer-Dombard DR, Swingley W, Raymond J, Havig J, Shock EL, Summons RE (2011) Hydrothermal ecotones and streamer biofilm communities in the Lower Geyser Basin, Yellowstone National Park. Environ Microbiol 13:2216–2231

    Article  CAS  PubMed  Google Scholar 

  • Miller SR, Strong AL, Jones KL, Ungerer MC (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75:4565–4572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell K, Takacs-Vesbach C (2008) A comparison of methods for total community DNA preservation and extraction from various thermal environments. J Ind Microbiol Biotechnol 35:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584

    PubMed  PubMed Central  Google Scholar 

  • Morgan L, Pierce K, McIntosh W (2005) Patterns of rhyolitic volcanism along the track of the Yellowstone hotspot. Geochim Cosmochim Acta Suppl 69:142

    Google Scholar 

  • Nordstrom DK, McCleskey RB, Ball JW (2009) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV acid–sulfate waters. Appl Geochem 24:191–207

    Article  CAS  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package. R package version:2.0-5

  • Piddock LJ (2006) Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol 4:629–636

    Article  CAS  PubMed  Google Scholar 

  • Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinform 28(12):38

    Article  Google Scholar 

  • Reysenbach AL, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:2113–2119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reysenbach AL, Ehringer H, Hershberger K (2000) Microbial diversity at 83 °C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4:61–67

    CAS  PubMed  Google Scholar 

  • Reysenbach A-L, Banta A, Daly SC, Mitchel K, Lalonde S, Konhauser K, Rodman A, Rusterholtz K, Takacs-Vesbach C (2005) Aquificales in Yellowstone National Park. In: Inskeep WP, McDermott TR (eds) Geothermal biology and geochemistry in YNP. Montana State University, Thermal Biology Institute, Bozeman, pp 129–142

    Google Scholar 

  • Rhoads DD, Wolcott RD, Sun Y, Dowd SE (2012) Comparison of culture and molecular identification of bacteria in chronic wounds. Int J Mol Sci 13:2535–2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson DJ, Berks BC, Russell DA, Spiro S, Taylor CJ (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58:165–178

    Article  CAS  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Rye RO, Truesdell AH (2007) The question of recharge to the deep thermal reservoir underlying the geysers and hot springs of Yellowstone National Park. US Geol Surv Prof Pap 1717:1–35

    Google Scholar 

  • Sen R, Maiti N (2014) Genomic and functional diversity of bacteria isolated from hot springs in Odisha, India. Geomicrobiol J 31:541–550

    Article  CAS  Google Scholar 

  • Shock EL, Holland M, Meyer-Dombard DA, Amend JP, Osburn GR, Fischer TP (2010) Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim Cosmochim Acta 74:4005–4043

    Article  CAS  Google Scholar 

  • Song Z-Q, Wang F-P, Zhi X-Y, Chen J-Q, Zhou E-M, Liang F, Xiao X, Tang S-K, Jiang H-C, Zhang CL, Dong H, Li W-J (2013) Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environ Microbiol 15:1160–1175

    Article  CAS  PubMed  Google Scholar 

  • Spear JR, Walker JJ, McCollom TM, Pace NR (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci USA 102:2555–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swingley WD, Meyer-Dombard DR, Shock EL, Alsop EB, Falenski HD, Havig JR, Raymond J (2012) Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem. PLoS One 7:e38108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Team RDC (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA (1983) Denitrification: ecological niches, competition and survival. Antonie Van Leeuwenhoek 48:569–583

    Article  Google Scholar 

  • Truesdell AH, Fournier RO (1976) Conditions in the deeper parts of the hot spring systems of Yellowstone National Park. Wyoming, US Geological Survey

    Google Scholar 

  • Truesdell AH, Nathenson M, Rye RO (1977) The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. J Geophys Res 82:3694–3704

    Article  CAS  Google Scholar 

  • van den Berg EM, van Dongen U, Abbas B, van Loosdrecht MC (2015) Enrichment of DNRA bacteria in a continuous culture. ISME J 9:2153–2161

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Horn DJ, Van Horn ML, Barrett JE, Gooseff MN, Altrichter AE, Geyer KM, Zeglin LH, Takacs-Vesbach CD (2013) Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: role of geographic scale. PLoS One 8:e66103

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Hou W, Dong H, Jiang H, Huang L, Wu G, Zhang C, Song Z, Zhang Y, Ren H, Zhang J, Zhang L (2013) Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS One 8:e62901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM (1998a) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM (1998b) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • White DE (1957) Thermal waters of volcanic origin. Geol Soc Am Bull 68:1637–1658

    Article  Google Scholar 

  • Xie W, Zhang CL, Wang J, Chen Y, Zhu Y, de la Torre JR, Dong H, Hartnett HE, Hedlund BP, Klotz MG (2015) Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables. Environ Microbiol 17:1600–1614

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Ye Q, Huang Z, Li W, Chen J, Song Z, Zhao W, Bagwell C, Inskeep WP, Ross C, Gao L, Wiegel J, Romanek CS, Shock EL, Hedlund BP (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74:6417–6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful for the valuable suggestions from three anonymous reviewers. We appreciate helpful discussions with David J. Van Horn and Daniel R. Colman related to data analyses performed in the study, as well as sample collection from Kendra R. Mitchell, and sample processing by George Rosenberg of the Center for Evolutionary and Theoretical Immunology (CETI), University of New Mexico. This work was supported by NSF Biodiversity Surveys and Inventories Grant 02-06773 to CTV and NIH-sponsored CETI 454 Voucher Program funding to XJ. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number P30GM110907. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina D. Takacs-Vesbach.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 10 kb)

Supplementary material 2 (XLSX 13 kb)

Supplementary material 3 (XLSX 15 kb)

Supplementary material 4 (XLSX 17 kb)

792_2016_889_MOESM5_ESM.tif

Fig. S1 Two-way hierarchical clustering of normalized COG protein family abundance data averaged across the level of COG categories. The data were standardized (subtract mean and divide by standard deviation) across sites before clustering, so that the color scale units represent standard deviations from the mean across sites. Red colors correspond to values that are higher than the site mean and green colors to values that are lower than the mean. The full names of metagenomes for this analysis are listed in Table S1 (TIFF 3280 kb)

792_2016_889_MOESM6_ESM.tif

Fig. S2 Taxonomic assignment of unassembled SMH metagenomic sequences based on GenBank (NCBI-nr), M5NR, and RefSeq databases at the class level (Only top four most abundant phyla listed) (TIFF 1256 kb)

792_2016_889_MOESM7_ESM.tif

Fig. S3 Partial nitrogen pathways identified by KEGG affiliation of the sequences from the site 04YSHM020. Boxes indicate the KEGG identifiers and numbers in gray circles indicate the number of sequences assigned to the KEGG function (TIFF 835 kb)

792_2016_889_MOESM8_ESM.tif

Fig. S4 Partial sulfur pathways identified by KEGG affiliation of the sequences from the site 04YSHM020. Boxes indicate the KEGG identifiers, and numbers in gray circles indicate the number of sequences assigned to the KEGG function (TIFF 894 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Takacs-Vesbach, C.D. Microbial community analysis of pH 4 thermal springs in Yellowstone National Park. Extremophiles 21, 135–152 (2017). https://doi.org/10.1007/s00792-016-0889-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0889-8

Keywords

Navigation