Skip to main content
Log in

Substrate adaptabilities of Thermotogae mannan binding proteins as a function of their evolutionary histories

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The Thermotogae possess a large number of ATP-binding cassette (ABC) transporters, including two mannan binding proteins, ManD and CelE (previously called ManE). We show that a gene encoding an ancestor of these was acquired by the Thermotogae from the archaea followed by gene duplication. To address the functional evolution of these proteins as a consequence of their evolutionary histories, we measured the binding affinities of ManD and CelE orthologs from representative Thermotogae. Both proteins bind cellobiose, cellotriose, cellotetraose, β-1,4-mannotriose, and β-1,4-mannotetraose. The CelE orthologs additionally bind β-1,4-mannobiose, laminaribiose, laminaritriose and sophorose while the ManD orthologs additionally only weakly bind β-1,4-mannobiose. The CelE orthologs have higher unfolding temperatures than the ManD orthologs. An examination of codon sites under positive selection revealed that many of these encode residues located near or in the binding site, suggesting that the proteins experienced selective pressures in regions that might have changed their functions. The gene arrangement, phylogeny, binding properties, and putative regulatory networks suggest that the ancestral mannan binding protein was a CelE ortholog which gave rise to the ManD orthologs. This study provides a window on how one class of proteins adapted to new functions and temperatures to fit the physiologies of their new hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38:W7–W13. doi:10.1093/nar/gkq291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balk M, Weijma J, Stams AJM (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52:1361–1368

    CAS  PubMed  Google Scholar 

  • Bauer MW, Bylina EJ, Swanson RV, Kelly RM (1996) Comparison of a β-glucosidase and a β-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus purification, characterization, gene cloning, and sequence analysis. J Biol Chem 271:23749–23755. doi:10.1074/jbc.271.39.23749

    Article  CAS  PubMed  Google Scholar 

  • Boucher N, Noll KM (2011) Ligands of thermophilic ABC transporters encoded in a newly sequenced genomic region of Thermotoga maritima MSB8 screened by differential scanning fluorimetry. Appl Environ Microbiol 77:6395–6399. doi:10.1128/AEM.05418-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butzin NC, Lapierre P, Green AG, Swithers KS, Gogarten JP, Noll KM (2013) Reconstructed ancestral myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants. PLoS One 8:e84300. doi:10.1371/journal.pone.0084300

    Article  PubMed  PubMed Central  Google Scholar 

  • Chhabra S, Parker KN, Lam D, Callen W, Snead MA, Mathur EJ, Short JM, Kelly RM (2001) β-Mannanases from Thermotoga species. Methods Enzymol 330:224–238

    Article  CAS  PubMed  Google Scholar 

  • Chhabra SR, Shockley KR, Ward DE, Kelly RM (2002) Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. Appl Environ Microbiol 68:545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiku K, Nihira T, Suzuki E, Nishimoto M, Kitaoka M, Ohtsubo K, Nakai H (2014) Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp X-514. PLoS One 9:e114882. doi:10.1371/journal.pone.0114882

    Article  PubMed  PubMed Central  Google Scholar 

  • Conners SB, Montero CI, Comfort DA, Shockley KR, Johnson MR, Chhabra SR, Kelly RM (2005) An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 187:7267–7282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuneo MJ, Beese LS, Hellinga HW (2009) Structural analysis of semi-specific oligosaccharide recognition by a cellulose-binding protein of Thermotoga maritima reveals adaptations for functional diversification of the oligopeptide periplasmic binding protein fold. J Biol Chem 284:33217–33223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos CR, Paiva JH, Meza AN, Cota J, Alvarez TM, Ruller R, Prade RA, Squina FM, Murakami MT (2012) Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-β-D-mannanase. J Struct Biol 177:469–476. doi:10.1016/j.jsb.2011.11.021

    Article  PubMed  Google Scholar 

  • Driskill LE, Kusy K, Bauer MW, Kelly RM (1999) Relationship between glycosyl hydrolase inventory and growth physiology of the hyperthermophile Pyrococcus furiosus on carbohydrate-based media. Appl Environ Microbiol 65:893–897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004a) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004b) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113. doi:10.1186/1471-2105-5-113

    Article  Google Scholar 

  • Eram MS, Wong A, Oduaran E, Ma K (2015) Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea. J Biochem 158:459–466. doi:10.1093/jb/mvv058

    CAS  PubMed  Google Scholar 

  • Ghimire-Rijal S, Lu X, Myles DA, Cuneo MJ (2014) Duplication of genes in an ATP-binding cassette transport system increases dynamic range while maintaining ligand specificity. J Biol Chem 289:30090–30100. doi:10.1074/jbc.M114.590992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein A, Barrett RW (1987) Ligand dissociation constants from competition binding assays: errors associated with ligand depletion. Mol Pharmacol 31:603–609

    CAS  PubMed  Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  • Jannasch HW, Huber R, Belkin S, Stetter KO (1988) Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol 150:103–104. doi:10.1007/BF00409725

    Article  Google Scholar 

  • Kazanov MD, Li X, Gelfand MS, Osterman AL, Rodionov DA (2013) Functional diversification of ROK-family transcriptional regulators of sugar catabolism in the Thermotogae phylum. Nucleic Acids Res 41:790–803. doi:10.1093/nar/gks1184

    Article  CAS  PubMed  Google Scholar 

  • Koning SM, Elferink MGL, Konings WN, Driessen AJM (2001) Cellobiose uptake in the hyperthermophilic archaeon Pyrococcus furiosus is mediated by an inducible, high-affinity ABC transporter. J Bacteriol 183:4979–4984. doi:10.1128/JB.183.17.4979-4984.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munshi P, Stanley CB, Ghimire-Rijal S, Lu X, Myles DA, Cuneo MJ (2013) Molecular details of ligand selectivity determinants in a promiscuous β-glucan periplasmic binding protein. BMC Struct Biol 13:18. doi:10.1186/1472-6807-13-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanavati DM, Nguyen TN, Noll KM (2005) Substrate specificities and expression patterns reflect the evolutionary divergence of maltose ABC transporters in Thermotoga maritima. J Bacteriol 187:2002–2009. doi:10.1128/JB.187.6.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanavati DM, Thirangoon K, Noll KM (2006) Several archaeal homologs of putative oligopeptide-binding proteins encoded by Thermotoga maritima bind sugars. Appl Environ Microbiol 72:1336–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  CAS  PubMed  Google Scholar 

  • Nesbø CL, Bradnan DM, Adebusuyi A, Dlutek M, Petrus AK, Foght J, Doolittle WF, Noll KM (2012) Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. Extremophiles 16:387–393. doi:10.1007/s00792-012-0437-0

    Article  PubMed  Google Scholar 

  • Noll KM, Thirangoon K (2009) Interdomain transfers of sugar transporters overcome barriers to gene expression. In: Boekels MBGM, Gogarten JP, Olendzenski LC (eds) Horizontal Gene Transfer: Genomes in Flux. Humana Press, New York, pp 309–322

    Chapter  Google Scholar 

  • Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Kazanov MD, Riehl W, Arkin AP, Dubchak I, Rodionov DA (2013) RegPrecise 3.0–a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genom 14:745. doi:10.1186/1471-2164-14-745

    Article  CAS  Google Scholar 

  • Park SH, Park KH, Oh BC, Alli I, Lee BH (2011) Expression and characterization of an extremely thermostable β-glycosidase (mannosidase) from the hyperthermophilic archaeon Pyrococcus furiosus DSM3638. New Biotechnol 28:639–648. doi:10.1016/j.nbt.2011.05.002

    Article  CAS  Google Scholar 

  • Parker KN, Chhabra SR, Lam D, Callen W, Duffaud GD, Snead MA, Short JM, Mathur EJ, Kelly RM (2001) Galactomannanases Man2 and Man5 from Thermotoga species: growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnol Bioeng 75:322–333

    Article  CAS  PubMed  Google Scholar 

  • Patel BKC, Morgan HW, Daniel RM (1985) Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69

    Article  CAS  Google Scholar 

  • Paulsen IT, Nguyen L, Sliwinski MK, Rabus R, Saier MH Jr (2000) Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol 301:75–100

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. doi:10.1038/nmeth.1701

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  • Santos CR, Squina FM, Navarro AM, Ruller R, Prade R, Murakami MT (2010) Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of the catalytic domain of a hyperthermostable endo-1,4-beta-d-mannanase from Thermotoga petrophila RKU-1. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1078–1081. doi:10.1107/s1744309110029131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swillens S (1995) Interpretation of binding curves obtained with high receptor concentrations: practical aid for computer analysis. Mol Pharmacol 47:1197–1203

    CAS  PubMed  Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909

    Article  CAS  PubMed  Google Scholar 

  • Thomas GH (2010) Homes for the orphans: utilization of multiple substrate-binding proteins by ABC transporters. Mol Microbiol 75:6–9

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, Tang R, Yu S, Zheng B, Feng Y (2010) A novel thermostable cellulase from Fervidobacterium nodosum. J Mol Catal B Enzym 66:294–301. doi:10.1016/j.molcatb.2010.06.006

    Article  CAS  Google Scholar 

  • Wieteska L, Ionov M, Szemraj J, Feller C, Kolinski A, Gront D (2015) Improving thermal stability of thermophilic l-threonine aldolase from Thermotoga maritima. J Biotechnol 199:69–76. doi:10.1016/j.jbiotec.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Zhao D, Zhao L, Pei J, Xiao W, Ding G, Wang Z, Xu J (2016) Characterization of a novel arabinose-tolerant α-l-arabinofuranosidase with high ginsenoside Rc to ginsenoside Rd bioconversion productivity. J Appl Microbiol 120:647–660. doi:10.1111/jam.13040

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci CABIOS 13:555–556

    CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. doi:10.1093/molbev/msm088

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes Empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118. doi:10.1093/molbev/msi097

    Article  CAS  PubMed  Google Scholar 

  • Zafar A, Aftab MN, Ud Din Z, Aftab S, Iqbal I, Ul Haq I (2016) Cloning, purification and characterization of a highly thermostable amylase gene of Thermotoga petrophila into Escherichia coli. Appl Biochem Biotechnol 178:831–848. doi:10.1007/s12010-015-1912-8

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479. doi:10.1093/molbev/msi237

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Yang W, Wang Y, Feng Y, Lou Z (2009) Crystallization and preliminary crystallographic analysis of thermophilic cellulase from Fervidobacterium nodosum Rt17-B1. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:219–222. doi:10.1107/S1744309109001316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng B, Yang W, Wang Y, Lou Z, Feng Y (2011) Influence of the N-terminal peptide on the cocrystallization of a thermophilic endo-β-1,4-glucanase with polysaccharide substrates. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:1218–1220. doi:10.1107/S1744309111033550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Access to the spectrofluorometer was graciously provided by Dr. Carol Teschke. We thank Drs. J. Peter Gogarten and Pascal Lapierre for discussions involving the phylogenetic and branched site model analyses. This work was supported by the NASA Astrobiology program (NNX08AQ10G), the U.S. Department of Energy Office of Biological and Environmental Research (DE-PS02-08ER08-12), and the National Science Foundation Assembling the Tree of Life program (DEB0830024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Noll.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2016_866_MOESM1_ESM.pdf

Figure S1. ClustalX sequence alignment of TmarCelE and TmarManD. Figure modified from (Ghimire-Rijal et al. 2014). Amino acid numbering includes the signal peptides which were not included in the alignment. Residues forming the metal binding site are highlighted in gray. The laminaripentaose specificity-determining loop is in boldface. Amino acids that interact with the six sugar rings are denoted with colored type as follows: first (red), second (orange), third (green), fourth (cyan), fifth (purple), and sixth (magenta). Residues that form hydrogen bonds to the sugar are underlined. When a residue interacts with more than one sugar ring, only the first sugar ring color is shown. Residues under positive selection are highlighted in green. Sequence comparisons are indicated by (*), identical amino acids between both sequences; (:), strongly conserved substitutions; and (.) are weakly conserved substitutions. (PDF 47 kb)

792_2016_866_MOESM2_ESM.pdf

Figure S2. Codon sites under positive selection mapped onto the CelETmar (A and B) and ManDTmar (C and D) crystal structures [pdb: 4pfw (ManD) and 4pfy (CelE)]. The active sites are magnified in B and D. The residues encoded by the codons under positive selection (class 2a) are highlighted as follows: residues 514 (ManD and CelE) and 519 (CelE) in the binding pocket are red, other residues in the binding pocket are orange, and those outside the binding pocket are blue. The β-1,4-mannohexaose is green with the sixth ring at the bottom in each figure. (PDF 481 kb)

Supplementary material 3 (DOCX 31 kb)

Supplementary material 4 (DOCX 108 kb)

Supplementary material 5 (DOCX 128 kb)

Supplementary material 6 (DOCX 98 kb)

Supplementary material 7 (DOCX 102 kb)

Supplementary material 8 (DOCX 3534 kb)

Supplementary material 9 (DOCX 102 kb)

Supplementary material 10 (DOCX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boucher, N., Noll, K.M. Substrate adaptabilities of Thermotogae mannan binding proteins as a function of their evolutionary histories. Extremophiles 20, 771–783 (2016). https://doi.org/10.1007/s00792-016-0866-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0866-2

Keywords

Navigation