Skip to main content
Log in

Anti-bacterial TeNPs biosynthesized by haloarcheaon Halococcus salifodinae BK3

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Microbial synthesis of highly structured metal sulfide and metallic nanoparticles is a benign approach of nanomaterial synthesis. Various microbes have been exploited for nanoparticle synthesis, but nanofabrication using haloarchaea is still in nascent stages. Here, we report the intracellular synthesis of hexagonal needle-shaped tellurium nanoparticles with an aspect ratio of 1:4.4, by the haloarcheon Halococcus salifodinae BK3. The isolate was able to tolerate up to 5.5 mM K2TeO3. The yield of tellurium nanoparticles was highest when the culture was exposed to 3 mM K2TeO3, even though the isolate exhibited slightly decreased growth rate as compared to the culture growing in the absence of K2TeO3. The enzyme tellurite reductase was responsible for tellurite resistance and nanoparticle synthesis in H. salifodinae BK3. These tellurium nanoparticles exhibited anti-bacterial activities against both Gram-positive and Gram-negative bacteria, with higher antibacterial activity towards Gram-negative bacteria. This is the first report on the synthesis of tellurium nanoparticles by Halophilic archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NTYE:

NaCl tryptone, yeast extract

TeNPs:

Tellurium nanoparticles

TEM:

Transmission electron microscope

SAED:

Selected area diffraction pattern

EDAX:

Energy dispersive analysis of X-ray

DDTC:

Diethyldithiocarbamate

β-NADH:

β-nicotinamide dinucleotide

TN:

Tris NaCl

REMA:

Resazurin microtiter assay

LT:

Lag time

NR:

Nitrate reductase

References

  • Amoozegar MA, Ashengroph M, Malekzadeh F, Reza Razavi M, Naddaf S, Kabiri M (2008) Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6. Microbiol Res 163:456–465

    Article  CAS  PubMed  Google Scholar 

  • Avazéri C, Turner RJ, Pommier J, Weiner JH, Giordano G, Verméglio A (1997) Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143:1181–1189

    Article  PubMed  Google Scholar 

  • Baesman SM, Bullen TD, Dewald J, Zhang D, Curran S, Islam FS, Beveridge TJ, Oremland RS (2007) Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Appl Environ Microbiol 73:2135–2143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basnayake RST, Bius JH, Akpolat OM, Chasteen TG (2001) Production of dimethyl telluride and elemental tellurium by bacteria amended with tellurite or tellurate. Appl Organomet Chem 15:499–510

    Article  CAS  Google Scholar 

  • Berney M, Weilenmann HU, Ihssen J, Bassin C, Egli T (2006) Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 72:2586–2593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bini E (2010) Archaeal transformation of metals in the environment. FEMS Microbiol Ecol 73:1–16

    CAS  PubMed  Google Scholar 

  • Borghese R, Baccolini C, Francia F, Sabatino P, Turner RJ, Zannoni D (2014) Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus. J Hazard Mater 269:24–30

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breidt F, Romick TL, Fleming HF (1994) Rapid method for the determination of bacterial growth kinetics. J Rapid Method Autom Microbiol 3:59–68

    Article  Google Scholar 

  • Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–25

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Lesnyak V, Bigall NC, Gaponik N, Eychmüller A (2010) Self-assembly of TGA-capped CdTe nanocrystals into three-dimensional luminescent nanostructures. Chem Mater 22:2309–2314

    Article  CAS  Google Scholar 

  • Chiong M, Barra R, González E, Vásquez C (1988a) Resistance of Thermus spp. to potassium tellurite. Appl Environ Microbiol 54:610–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiong M, Gonzaèlez E, Barra R, Vaèasquez C (1988b) Purification and biochemical characterization of tellurite-reducing activities from Thermus thermophilus HB8. J Bacteriol 170:3269–3273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper WC (1971) Tellurium. Van Nostrand Reinhold

  • Cooper P, Few A (1952) Uptake of potassium tellurite by a sensitive strain of Escherichia coli. J Biochem (Tokyo) 51:552–557

    CAS  Google Scholar 

  • Cournoyer B, Watanabe S, Vivian A (1998) A tellurite resistance genetic determinant from phytopathogenic pseudomonads encodes a thiopurine methyltransferase: evidence of a widely-conserved family of methyltransferases. Biochim Biophys Acta 1397:161–168

    Article  CAS  PubMed  Google Scholar 

  • Jasenec A, Barasa N, Kulkarni S, Shaik N, Moparthi S, Konda V, Caguiat J (2009) Proteomic profiling of l-cysteine induced selenite resistance in Enterobacter sp. YSU. Proteome Sci 7:30. doi:10.1186/1477-5956-7-30

    Article  PubMed Central  PubMed  Google Scholar 

  • Kamekura M (1993) Lipids of extreme halophiles. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 135–161

    Google Scholar 

  • Klonowska A, Heulin T, Vermeglio A (2005) Selenite and tellurite reduction by Shewanella oneidensis. Appl Environ Microbiol 71:5607–5609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurimella VR, Kumar KR, Sanasi PD (2013) A novel synthesis of tellurium nanoparticles using iron (II) as a reductant. Int J Nanosci Nanotech 4:209–221

    Google Scholar 

  • Lan WJ, Yu SH, Qian SH, Wan Y (2007) Dispersability, stabilisation, and chemical stability of ultrathin tellurium nanowires in acetone: morphology change, crystallization, and transformation into TeO2 in different solvents. Langmuir 23:3409–3417

    Article  CAS  PubMed  Google Scholar 

  • Law WC, Yong KT, Roy I, Ding H, Hu R, Zhao W, Prasad PN (2009) Aqueous- phase synthesis of highly luminescent CdTe/ZnTe core/Shell quantum dots optimized for targeted bioimaging. Small 5:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Lin ZH, Yang Z, Chang HT (2008) Preparation of fluorescent tellurium nanowires at room temperature. Cryst Growth Des 8:351–357

    Article  CAS  Google Scholar 

  • Lin ZH, Lee CH, Chang HY, Chang HT (2012) Antibacterial activities of tellurium nanomaterials. Chem Asian J 7:930–934

    Article  CAS  PubMed  Google Scholar 

  • LiPuma JJ, Rathinavelu S, Foster BK, Keoleian JC, Makidon PE, Kalikin LM, Baker JR Jr (2009) In vitro activities of a novel nanoemulsion against Burkholderia and other multidrug-resistant cystic fibrosis-associated bacterial species. Antimicrob Agent Chemother 53:249–255

    Article  CAS  Google Scholar 

  • Liu ZP, Hu ZK, Xie Q, Yang BJ, Wu J, Qian YT (2003) Surfactant assisted growth of uniform nanorods of crystalline tellurium. J Mater Chem 13:159–162

    Article  CAS  Google Scholar 

  • Mani K, Salgaonkar BB, Braganca JM (2012) Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India. Aquatic Biosyst 8:15. doi:10.1186/2046-9063-8-15

    Article  CAS  Google Scholar 

  • Mayers B, Xia Y (2002a) Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds. Adv Mater 14:279–282

    Article  CAS  Google Scholar 

  • Mayers B, Xia Y (2002b) One dimensional nano structures of trigonal tellurium with various morphologies can be synthesized using a solution phase-approach. J Mater Chem 12:1875–1881

    Article  CAS  Google Scholar 

  • Naumov AV (2010) Selenium and tellurium: state of the markets, the crisis, and its consequences. Metallurgist 54:3–4

    Article  Google Scholar 

  • O’Gara JP, Gomelsky M, Kaplan S (1997) Identification and molecular genetic analysis of multiple loci contributing to high level tellurite resistance in Rhodobacter sphaeroides. Appl Environ Microbiol 63:4713–4720

    PubMed Central  PubMed  Google Scholar 

  • Oren A (2012) The function of gas vesicles in halophilic archaea and bacteria: theories and experimental evidence. Life 3:1–20. doi:10.3390/life3010001

    Article  PubMed Central  PubMed  Google Scholar 

  • Pearion CT, Jablonski PE (1999) High level, intrinsic resistance of Natronococcus occultus to potassium tellurite. FEMS Microbiol Lett 174:19–23

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Biosynthesis of silver and gold nanoparticles from extracts of different parts of the geranium plant. Appl Nanosci 1:69–77

    Google Scholar 

  • Srivastava P, Kowshik M (2013) Mechanisms of metal resistance and homeostasis in haloarchaea. Archaea. doi:10.1155/2013/732864

    PubMed Central  PubMed  Google Scholar 

  • Srivastava P, Bragança J, Ramanan SR, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17:821–831

    Article  CAS  PubMed  Google Scholar 

  • Summers AO, Jacoby GA (1977) Plasmid-determined resistance to tellurium compounds. J Bacteriol 129:276–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang Z, Zhang Z, Wang Y, Glotzer SC, Kotov NA (2006) Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314:274–278

    Article  CAS  PubMed  Google Scholar 

  • Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7:111–115

    Article  CAS  PubMed  Google Scholar 

  • Taylor DE, Hou Y, Turner RJ, Weiner JH (1994) Location of a potassium tellurite resistance operon (tehAtehB) within the terminus of Escherichia coli K-12. J Bacteriol 176:2740–2742

  • Terai T, Kamamura Y (1958) Tellurite reductase from Mycobacterium avium. J Bacteriol 75:535–539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas JW, Appleman MD, Tucker FL (1963) Reduction of tellurite by whole cells, protoplasm and cell-free extracts of Streptococci. Bacteriol Proc 124

  • Turner R, Weiner J, Taylor D (1992) Use of diethyldithiocarbamate for quantitative determination of tellurite uptake by bacteria. Anal Biochem 204:292–295

    Article  CAS  PubMed  Google Scholar 

  • Turner RJ, Weiner JH, Taylor DE (1995) The tellurite-resistance determinants tehAtehI3 and k/aAk/aBte/B have different biochemical requirements. Microbiology 141:3133–3140

    Article  CAS  PubMed  Google Scholar 

  • Turner RJ, Weiner JH, Taylor DE (1999) Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology 145:2549–2557

    CAS  PubMed  Google Scholar 

  • Ufimtsev VB, Osvensky VB, Bublik VT, Sagalova TB, Jouravlev OE (1997) Structure, homogeneity and properties of thermoelectric materials based on ternary solid solutions of bismuth and antimony chalcogenides. Adv Perform Mater 4:189–197

    Article  CAS  Google Scholar 

  • Xi G, Peng Y, Yu W, Qian Y (2005) Synthesis, characterization, and growth mechanism of tellurium nanotubes. Cryst Growth Des 5:325–328

    Article  CAS  Google Scholar 

  • Yurkov V, Jappe J, Vermeglio A (1996) Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol 62:4195–4198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Sassan R, Ahmad RS (2012) Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater Res Bull 47:3719–3725

    Article  CAS  Google Scholar 

  • Zare B, Sepehrizadeh Z, Faramarzi MA, Soltany-Rezaee-Rad M, Rezaie S, Shahverdi AR (2013) Antifungal activity of biogenic tellurium nanoparticles against Candida albicans and its effects on squalene monooxygenase gene expression. Biotechnol Appl Biochem 61:395–400

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ministry of Earth Science (MoES), Government of India for their funding of the project MoES/11-MRDF/1/38/P/10-PC-III. We would like to thank SAIF at IIT-Bombay for their help with TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenal Kowshik.

Additional information

Communicated by H. Atomi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2015_767_MOESM1_ESM.tif

Supplementary Fig. 1 Effect of various concentrations of K2TeO3 (0.3 mM and 3 mM) on pigment production ability of H. salifodinae BK3. The pigment production decreased with the increase in K2TeO3 concentration. (TIFF 203 kb)

792_2015_767_MOESM2_ESM.tif

Supplementary Fig. 2 Growth profile of H. salifodinae BK3 at varying concentrations of K2TeO3. The growth was found to decrease with the increase in metal concentration. MIC was found to be 6 mM. (TIFF 76 kb)

792_2015_767_MOESM3_ESM.tif

Supplementary Fig. 3 Effect of 3 mM K2TeO3 on the colony size of H. salifodinae BK3. In order to overcome the toxicity exerted by the 3 mM K2TeO3 and to efficiently carry out the metabolic activities, the organism may have reduced its size. (TIFF 990 kb)

792_2015_767_MOESM4_ESM.tif

Supplementary Fig. 4 (a) Effect of K2TeO3 on the nitrate reductase enzyme activity in the absence of K2TeO3 (control) and in the presence of 0.3 and 3 mM K2TeO3 and 0.3 and 3 mM KNO3; (b) Effect of various inhibitors like PMSF, IAA, EDTA, and sodium azide on nitrate reductase enzyme activity of H. salifodinae BK3 in the presence of K2TeO3. Data represented are the enzyme activity in the presence of inhibitor as a percentage of that in controls where inhibitor was not added. Values are mean ± SD (error bars) for three experiments. (TIFF 8221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P., Nikhil, E.V.R., Bragança, J.M. et al. Anti-bacterial TeNPs biosynthesized by haloarcheaon Halococcus salifodinae BK3. Extremophiles 19, 875–884 (2015). https://doi.org/10.1007/s00792-015-0767-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0767-9

Keywords

Navigation