Skip to main content
Log in

Transcriptional response to copper excess and identification of genes involved in heavy metal tolerance in the extremophilic microalga Chlamydomonas acidophila

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

High concentrations of heavy metals are typical of acidic environments. Therefore, studies on acidophilic organisms in their natural environments improve our understanding on the evolution of heavy metal tolerance and detoxification in plants. Here we sequenced the transcriptome of the extremophilic microalga Chlamydomonas acidophila cultivated in control conditions and with 500 μM of copper for 24 h. High-throughput 454 sequencing was followed by de novo transcriptome assembly. The reference transcriptome was annotated and genes related to heavy metal tolerance and abiotic stress were identified. Analyses of differentially expressed transcripts were used to detect genes involved in metabolic pathways related to abiotic stress tolerance, focusing on effects caused by increased levels of copper. Both transcriptomic data and observations from PAM fluorometry analysis suggested that the photosynthetic activity of C. acidophila is not adversely affected by addition of high amounts of copper. Up-regulated transcripts include several transcripts related to photosynthesis and carbohydrate metabolism, transcripts coding for general stress response, and a transcript annotated as homologous to the oil-body-associated protein HOGP coding gene. The first de novo assembly of C. acidophila significantly increases transcriptomic data available on extremophiles and green algae and thus provides an important reference for further molecular genetic studies. The differences between differentially expressed transcripts detected in our study suggest that the response to heavy metal exposure in C. acidophila is different from other studied green algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilera A, Amils R (2005) Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aquat Toxicol 75:316–329

    Article  CAS  PubMed  Google Scholar 

  • Aguilera A, Manrubia SC, Gómez F, Rodriguez N, Amils R (2006) Eukaryotic community distribution and their relationship to water physicochemical parameters in an extreme acidic environment, Río Tinto (SW, Spain). Appl Environ Microbiol 72:5325–5330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahamad ZH, Shuhanija SN (2013) Physiological and biochemical responses of a Malaysian red alga, Gracilaria manilaensis treated with copper, lead and mercury. J Environ Res Develop 7:1246–1253

    CAS  Google Scholar 

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acid Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Amaral-Zettler L, Zettler ER, Theroux S, Palacios C, Aguilera Amils R (2011) Microbial community structure across the tree of life in the extreme Río Tinto. ISME J 5:42–50

    Article  PubMed Central  PubMed  Google Scholar 

  • Amils R, Fernández-Remolar D, The IPBSL Team (2014) Río Tinto: a geochemical and mineralogical terrestrial analogue of mars. Life 4:511–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Armendáriz AD, González M, Loguinov AV, Vulpe CD (2004) Gene expression profiling in chronic copper overload reveals upregulation of Prnp and App. Physiol Genomics 20:45–54

    Article  PubMed  Google Scholar 

  • Armendáriz AD, Olivares F, Pulgar R, Loguinov A, Cambiazo V, Vulpe CD (2006) González M. Gene expression profiling in wild-type and metallothionein mutant fibroblast cell lines. Biol Res 39:125–142

    Article  PubMed  Google Scholar 

  • Baszynski T, Tukendorf A, Ruszkowska M, Skorzynska E, Maksymiec W (1988) Characteristics of the photosynthetic apparatus of copper non tolerant spinach exposed to excess copper. J Plant Physiol 132:708–713

    Article  CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  CAS  PubMed  Google Scholar 

  • Bertoni G (2011) Global analysis of copper responsiveness in Chlamydomonas. Plant Cell 23:1188

    Article  PubMed Central  CAS  Google Scholar 

  • Bhargava P, Mishra Y, Srivastava AK, Narayan OP, Rai LC (2008) Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: a homology based proteomic assessment of its survival strategy. Photosynth Res 96:61–74

    Article  CAS  PubMed  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Article  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2012) The ins and outs of algal metal-transport. Biochim Biophys Acta 1823:1531–1552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S, Pangilinan J, Pröschold T, Salamov A, Schmutz J, Weeks D, Yamada T, Lomsadze A, Borodovsky M, Claverie JM, Grigoriev IV, Van Etten JL (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burt A, Koufopanou V (2004) Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr Opin Genet Dev 14:609–615

    Article  CAS  PubMed  Google Scholar 

  • Caillau M, Quick PW (2005) New insights into plant transaldolase. Plant J 43:1–16

    Article  CAS  PubMed  Google Scholar 

  • Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, M TC, Mouriz A, Catarecha P, Sobrino-Plata J, Olsson S, Leo del Puerto Y, Mateos I, Rojo E, Hernández LE, Jarillo JA, Piñeiro M, Paz-Ares J, Leyva A (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in arabidopsis. Plant Cell 25:2944–2957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C, Pellegrini M, Merchant SS (2011) Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23:1273–1292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Connan S, Stengel DB (2011) Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on photosynthesis, growth and copper accumulation. Aquat Toxicol 104:97–107

    Google Scholar 

  • Davis AK, Hildebrand M, Palenik B (2006) Gene expression induced by copper stress in the diatom Thalassiosira pseudonana. Eukaryot Cell 5:1157–1168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11:1–12

    Article  PubMed  Google Scholar 

  • De Montaigu A, Sanz-Luque E, Galvan A, Fernandez E (2010) A soluble guanylate cyclase mediates negative signaling by ammonium on expression of nitrate reductase in Chlamydomonas. Plant Cell 22:1532–1548

    Article  PubMed Central  PubMed  Google Scholar 

  • De Wit P, Pespeni MH, Ladner JT, Barshis DJ, Seneca F, Jaris H, Overgaard Therkildsen N, Morikawa M, Palumbi SR (2012) The simple fool’s guide to population genomics via RNA-seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Resour 12:1058–1067

    Article  PubMed  Google Scholar 

  • Desvoyes B, de Mendoza A, Ruiz-Trillo I, Gutierrez C (2014) Novel roles of plant retinoblastoma-related (RBR) protein in cell proliferation and asymmetric cell division. J Exp Bot 65:2657–2666

    Article  CAS  PubMed  Google Scholar 

  • Eggert A, Raimund S, Michalik D, West J, Karsten U (2007) Ecophysiological performance of the primitive red alga Dixoniella grisea (Rhodellophyceae) to irradiance, temperature and salinity stress: growth responses and the osmotic role of mannitol. Phycologia 46:22–28

    Article  Google Scholar 

  • Eriksson M, Moseley JL, Tottey S, del Campo JA, Quinn JM, Kim Y, Merchant S (2004) Genetic dissection of nutritional copper signaling in Chlamydomonas distinguishes regulatory and target genes. Genetics 168:795–807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical fresh water alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem 21:2412–2422

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gómez-Ortiz D, Fernández-Remolar DC, Granda A, Quesada C, Granda T, Prieta-Ballesteros O, Molina A, Amils R (2014) Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water. Earth Planet Sci Lett 391:36–41

    Article  Google Scholar 

  • González M, Reyes-Jara A, Suazo M, Jo WJ, Vulpe Chris (2008) Expression of copper-related genes in response to copper load. Am J Clin Nutr 88:8305–8345

    Google Scholar 

  • González A, Cabrera Mde L, Henríquez MJ, Contreras RA, Morales B, Moenne A (2012) Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving Calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol 158:1451–1462

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Gustavs L, Eggert A, Michalik D, Karsten U (2009) Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. Protoplasma 243:3–14

    Article  PubMed  Google Scholar 

  • Halter D, Andres J, Plewniak F, Poulain J, Da Silva C, Arsène-Ploetze F, Bertin PN (2014) Arsenic hypertolerance in the protist Euglena mutabilis is mediated by specific transporters and functional integrity maintenance mechanisms. Environ Microbiol. doi:10.1111/1462-2920.12474

    PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  CAS  PubMed  Google Scholar 

  • Jablonsky J, Hagemann M, Schwarz D, Wolkenhauer O (2013) Phosphoglycerate mutases function as reverse regulated isoenzymes in Synechococcus elongatus PCC 7942. PLoS One 8:e58281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jamers A, Blust R, De Coen W, Griffin JL, Jones OAH (2013) Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach. Biometals 26:731–740

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Misawa K, Kuma K, MiyataT (2002) MAFFT: a novel method for rapid multiple squence alignment based on fast Fourier transform. Nucleic Acid Res 30:3059–3066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  CAS  PubMed  Google Scholar 

  • Knauert S, Knauer K (2008) The role of reactive oxygen species in copper toxicity to two freshwater green algae. J Phycol 44:311–319

    Article  CAS  Google Scholar 

  • Koufopanou V, Goddard MR, Burt A (2002) Adaptation for horizontal transfer in a homing endonuclease. Mol Biol Evol 19:239–246

    Article  CAS  PubMed  Google Scholar 

  • Kühnlenz T, Schmidt H, Uraguchi S (2014) Clemens S Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil. J Exp Biol 65:4241–4253

    Google Scholar 

  • Kupper H, Setlik I, Setlikova E, Ferimazova N, Spiller M (2003) Kupper FC Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Funct Plant Biol 30:1187–1196

    Article  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  • Lehmann M, Schwarzländer M, Obata T, Sirikantaramas S, Burow M, Olsen CE, Tohge T, Fricker MD, Møller BL, Fernie AR, Sweetlove LJ, Lxa M (2009) The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux. Mol Plant 2:390–406

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Liu L-H, Ludewig U, Frommer WB, von Wirén N (2003) AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell 15:790–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu G, Chai X, Shao Y, Hu L, Xie Q, Wu H (2011) Toxicity of copper, lead, and cadmium on the motility of two marine microalgae Isochrysis galbana and Tetraselmis chui. J Environ Sci 23:330–335

    Article  CAS  Google Scholar 

  • Manichaikul A, Ghamsari L, Hom EF, Lin C, Murray RR, Chang RL, Balaji S, Hao T, Shen Y, Chavali AK, Thiele I, Yang X, Fan C, Mello E, Hill DE, Vidal M, Salehi-Ashtiani K, Papin JA (2009) Metabolic network analysis integrated with transcript verification for sequenced genomes. Nat Methods 6:589–592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mason AZ, Jenkins KD (1995) Metal detoxification in aquatic organisms. In: Tessier A, Turner DR (eds) Metal speciation and biovailability in aquatic systems. Wiley, Chichester, pp 279–608

    Google Scholar 

  • Meier S, Madeo L, Ederli L, Donaldson L, Pasqualini S, Gehring C (2009) Deciphering cGMP signatures and cGMP-dependent pathways in plant defence. Plant Signal Behav 4:307–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, Terauchi AM (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1763:578–594

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Müller K, Quandt D, Müller J, Neinhuis C (2006) PhyDE ®: Phylogenetic data editor, version 0.995. http://www.phyde.de

  • Muller P, van Bakel H, van de Sluis B, Holstege F, Wijmenga C, Klomp LW (2007) Gene expression profiling of liver cells after copper overload in vivo and in vitro reveals new copper-regulated genes. J Biol Inorg Chem 12:495–507

    Article  CAS  PubMed  Google Scholar 

  • N. Lettner, S. Jamge, A. Kosarewicz, L. M. Bayer, O. M. Scheid. How a retrotransposon exploits the plant’s heat stress response for its activation. PLOS Genetics. doi: 10.1371/journal.pgen.100411

  • Nikookar K, Moradshahi A, Hosseini L (2005) Physiological responses of Dunaliella salina and Dunaliella tertiolecta to copper toxicity. Biomol Eng 22:141–146

    Article  CAS  PubMed  Google Scholar 

  • Nixdorf B, Wollmann K, Deneke R (1998) Ecological potentials for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia. In: Geller J, Klapper H, Salomons W (eds) Acidic mining lakes. Springer, New York, pp 147–167

    Chapter  Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy and consequences from environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci 96:3455–3462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peled E, Leu S, Zarka A, Weiss M, Pick U, Boussiba S (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 46:851–861

    Article  CAS  PubMed  Google Scholar 

  • Petrou K, Doblin MA, Smith RA, Ralph PJ, Shelly K, Beardall J (2008) State transitions and non-photochemical quenching during a nutrient induced fluorescence transient in phosphate starved Duniella tertiolecta. J Phycol 44:1204–1211

    Article  Google Scholar 

  • Pilon M, Cohu CM, Ravet K, Abdel-Ghany SE, Gaymard F (2009) Essential transition metal homeostasis in plants. Curr Opin Plant Biol 12:347–357

    Article  CAS  PubMed  Google Scholar 

  • Pinto E, Sigaud-Kutner TC, Leitão MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  CAS  PubMed  Google Scholar 

  • Ratkevicius N, Correa JA, Moenne A (2003) Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal enriched environments in Northern Chile. Plant Cell Environ 26:1599–1608

    Article  CAS  Google Scholar 

  • Rea PA, Vatamaniuk OK, Rigden DJ (2004) Weeds, worms, and more. papain’s long-lost cousin, phytochelatin synthase. Plant Physiol 136:2463–2474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Remans T, Smeets K, Opdenakker K, Mthijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson MD, Smyth GK (2008) Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9:321–332

    Article  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Schaap P (2005) Guanylyl cyclases across the tree of life. Front Biosci 10:1085–1498

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schönknecht G, Chen WH, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Bräutigam A, Baker BJ, Banfield JF, Garavito RM, Carr K, Wilkerson C, Rensing SA, Gagneul D, Dickenson NE, Oesterhelt C, Lercher MJ, Weber AP (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210

    Article  PubMed  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-destructive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis, vol 100. Springer, Heidelberg, pp 49–70

    Google Scholar 

  • Schreiber U, Muller JF, Haugg A, Gademann R (2002) New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. Photosynth Res 74:317–330

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Springer, Berlin

    Google Scholar 

  • Srivastava S, Mishraa S, Tripathia RD, Dwivedia S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (Lf) Royle. Aquat Toxicol 80:405–415

    Article  CAS  PubMed  Google Scholar 

  • Stauber JL, Florence TM (1987) Mechanism of toxicity of ionic copper and copper complexes to algae. Marine Biol 94:511–519

    Article  CAS  Google Scholar 

  • Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform 11:7

    Article  Google Scholar 

  • Stuhlfauth T, Scheuermann R, Fock HP (1990) Light energy dissipation under water stress conditions. Plant Physiol 92:1053–1061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • TAXAassign, https://github.com/umerijaz/TAXAassign. Accessed on 19th of June 2014

  • Tsuji N, Hirayanagi N, Iwabe O, Namba T, Tagawa M, Miyamoto S, Miyasaka H, Takagi M, Hirata K, Miyamoto K (2003) Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga, Dunaliella tertiolecta. Phytochemistry 62:453–459

    Article  CAS  PubMed  Google Scholar 

  • van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren Ver, van Themaat E, Koornneef M, Aarts (2006) Large expression differences in genes for iron and zinc homeostasis, stress response and lignin biosynthesis distinguish Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Nocker S, Ludwig P (2003) The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genom 4:50

    Article  Google Scholar 

  • Vatanaviboon P, Varaluksit T, Seeanukun C, Mongkolsuk S (2002) Transaldolase exhibits a protective role against menadione toxicity in Xanthomonas campestris pv. phaseoli. Biochem Biophys Res Commun 297:968–973

    Article  CAS  PubMed  Google Scholar 

  • Wang SB, Chen F, Sommerfeld M, Hu Q (2004) Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220:17–29

    Article  CAS  PubMed  Google Scholar 

  • Wang WH, Koehler B, Cao FQ, Liu GW, Gong YY, Sheng S, Song QC, Cheng XY, Garnett T, Okamoto M, Qin R, Mueller-Roeber B, Tester M, Liu LH (2012) Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis. New Phytol 193:432–444

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang D, Pan X (2013) Effects of cadmium on the activities of photosystems of Chlorella pyrenoidosa and the protective role of cyclic electron flow. Chemosphere 93:230–237

    Article  CAS  PubMed  Google Scholar 

  • Yahara K, Fukuyo M, Sasaki A, Kobayashi I (2009) Evolutionary maintenance of selfish homing endonuclease genes in the absence of horizontal transfer. Proc Natl Acad Sci USA 106:18861–18866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Spanish Ministry of Economy and Competitivity (MINECO) under Grant CGL-2011-22540. We acknowledge the Data Intensive Academic Grid (DIAG) computing infrastructure [funded by National Science Foundation under Grant No. 0959894 titled MRI-R2: Acquisition of Data Intensive Academic Grid (DIAG)] as well as CSC–Finnish IT Center for Science and the Finnish Grid Infrastructure (FGI) for the allocation of computational resources. F. Puente-Sánchez enjoys a JAE-pre fellowship from the Spanish Consejo Superior de Investigaciones Científicas (CSIC). Daniel Barshis and Kimmo Mattila are acknowledged for help with the taxonomic annotation of transcripts.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanna Olsson.

Additional information

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2015_746_MOESM1_ESM.pdf

Availability of supporting data: The Transcriptome Shotgun Assembly project supporting the results of this article is available in the National Center for Biotechnology Information (GBAH00000000, http://www.ncbi.nlm.nih.gov/nuccore/GBAH00000000). The data sets supporting the results of this article are included within the article and its supplementary files except for the phylogenetic trees for transcripts contig03072, contig03074, contig12255 and contig13050 as well as corresponding alignments used for the analyses, which are available in the LabArchives (DOI 10.6070/H4VD6WDR, https://mynotebook.labarchives.com/doi/NTI4ODQuMHw0MDY4MC80MDY4MC9Ob3RlYm9vay80MTkyMjc0OTc3fDEzNDI0NC4w/10.6070/H4VD6WDR). Online Resource 1 Housekeeping genes used for normalization in differential gene expression analysis. Reads are indicated as number of raw reads and normalized FPKM values. (PDF 184 kb)

Online Resource 2Summary of GO-terms of assembled Chlamydomonas acidophila transcripts (PDF 2141 kb)

792_2015_746_MOESM3_ESM.pdf

Online Resource 3Transcripts in Chlamydomonas acidophila functionally associated to stress. Information on length, top match organism in BLASTx to nr database, best BLAST hit accession number, E-value and functional annotation based on BLASTx searches is indicated (PDF 548 kb)

792_2015_746_MOESM4_ESM.pdf

Online Resource 4Putative foreign transcripts in Chlamydomonas acidophila functionally associated to metal stress and detoxification. The transcripts get a first BLAST hit in other organisms than green algae or plants. Transcript length, top match organism in BLASTx to nr database, best BLAST hit accession number, E-value and putative functions are also reported (PDF 294 kb)

792_2015_746_MOESM5_ESM.pdf

Online Resource 5Chlamydomonas acidophila transcripts that get a different first BLAST hit and consensus taxonomy. The transcripts get a first blast hit in other organisms than green algae or plants but get a consensus taxonomy annotation as green algae with TAXAassign using consensus threshold -t 70 (PDF 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsson, S., Puente-Sánchez, F., Gómez, M.J. et al. Transcriptional response to copper excess and identification of genes involved in heavy metal tolerance in the extremophilic microalga Chlamydomonas acidophila . Extremophiles 19, 657–672 (2015). https://doi.org/10.1007/s00792-015-0746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0746-1

Keywords

Navigation