Skip to main content
Log in

Functional and structural characterization of protein disulfide oxidoreductase from Thermus thermophilus HB27

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The paper reports the characterization of a protein disulfide oxidoreductase (PDO) from the thermophilic Gram negative bacterium Thermus thermophilus HB27, identified as TTC0486 by genome analysis and named TtPDO. PDO members are involved in the oxidative folding, redox balance and detoxification of peroxides in thermophilic prokaryotes. Ttpdo was cloned and expressed in E. coli and the recombinant purified protein was assayed for the dithiol-reductase activity using insulin as substrate and compared with other PDOs characterized so far. In the thermophilic archaeon Sulfolobus solfataricus PDOs work as thiol-reductases constituting a peculiar redox couple with Thioredoxin reductase (SsTr). To get insight into the role of TtPDO, a hybrid redox couple with SsTr, homologous to putative Trs of T. thermophilus, was assayed. The results showed that SsTr was able to reduce TtPDO in a concentration dependent manner with a calculated K M of 34.72 μM, suggesting the existence of a new redox system also in thermophilic bacteria. In addition, structural characterization of TtPDO by light scattering and circular dichroism revealed the monomeric structure and the high thermostability of the protein. The analysis of the genomic environment suggested a possible clustering of Ttpdo with TTC0487 and TTC0488 (tlpA). Accordingly, transcriptional analysis showed that Ttpdo is transcribed as polycistronic messenger. Primer extension analysis allowed the determination of its 5′end and the identification of the promoter region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achard ME, Hamilton AJ, Dankowski T, Heras B, Schembri MS, Edwards JL, Jennings MP, McEwan AG (2009) A periplasmic thioredoxin-like protein plays a role in defense against oxidative stress in Neisseria gonorrhoeae. Infect Immun 77(11):4934–4939. doi:10.1128/IAI.00714-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beeby M, O’Connor BD, Ryttersgaard C, Boutz DR, Perry LJ, Yeates TO (2005) The genomics of disulfide bonding and protein stabilization in thermophiles. PLoS Biol 3(9):e309. doi:10.1371/journal.pbio.0030309

    Article  PubMed Central  PubMed  Google Scholar 

  • Berndt C, Lillig CH, Holmgren A (2008) Thioredoxins and glutaredoxins as facilitators of protein folding. Bba Mol Cell Res 1783(4):641–650. doi:10.1016/j.bbamcr.2008.02.003

    CAS  Google Scholar 

  • Cabibbo A, Pagani M, Fabbri M, Rocchi M, Farmery MR, Bulleid NJ, Sitia R (2000) ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J Biol Chem 275(7):4827–4833. doi:10.1074/jbc.275.7.4827

    Article  CAS  PubMed  Google Scholar 

  • Cava F, Hidalgo A, Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13(2):213–231. doi:10.1007/s00792-009-0226-6

    Article  CAS  PubMed  Google Scholar 

  • Cho SH, Parsonage D, Thurston C, Dutton RJ, Poole LB, Collet JF, Beckwith J (2012) A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope. MBio 3(2). doi:10.1128/mBio.00291-11

  • D’Ambrosio K, Pedone E, Langella E, De Simone G, Rossi M, Pedone C, Bartolucci S (2006) A novel member of the protein disulfide oxidoreductase family from Aeropyrum pernix K1: structure, function and electrostatics. J Mol Biol 362(4):743–752. doi:10.1016/j.jmb.2006.07.038

    Article  PubMed  Google Scholar 

  • Del Giudice I, Limauro D, Pedone E, Bartolucci S, Fiorentino G (2013) A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification. Biochim Biophys Acta 1834(10):2071–2079. doi:10.1016/j.bbapap.2013.06.007

    Article  PubMed  Google Scholar 

  • Gross E, Sevier CS, Vala A, Kaiser CA, Fass D (2002) A new FAD-binding fold and intersubunit disulfide shuttle in the thiol oxidase Erv2p. Nat Struct Biol 9(1):61–67. doi:10.1038/Nsb740

    Article  CAS  PubMed  Google Scholar 

  • Gross E, Kastner DB, Kaiser CA, Fass D (2004) Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell 117(5):601–610. doi:10.1016/S0092-8674(04)00418-0

    Article  CAS  PubMed  Google Scholar 

  • Gross E, Sevier CS, Heldman N, Vitu E, Bentzur M, Kaiser CA, Thorpe C, Fass D (2006) Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc Natl Acad Sci USA 103(2):299–304. doi:10.1073/pnas.0506448103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ (2006) Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 31(8):455–464. doi:10.1016/j.tibs.2006.06.001

    Article  CAS  PubMed  Google Scholar 

  • Guagliardi A, Depascale D, Cannio R, Nobile V, Bartolucci S, Rossi M (1995) The purification, cloning, and high-level expression of a glutaredoxin-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 270(11):5748–5755

    Article  CAS  PubMed  Google Scholar 

  • Hatahet F, Boyd D, Beckwith J (2014) Disulfide bond formation in prokaryotes: history, diversity and design. Biochim Biophys Acta. doi:10.1016/j.bbapap.2014.02.014

    PubMed  Google Scholar 

  • Heinemann J, Hamerly T, Maaty WS, Movahed N, Steffens JD, Reeves BD, Hilmer JK, Therien J, Grieco PA, Peters JW, Bothner B (2014) Expanding the paradigm of thiol redox in the thermophilic root of life. Biochim Biophys Acta 1840(1):80–85. doi:10.1016/j.bbagen.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  • Henne A, Bruggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22(5):547–553. doi:10.1038/nbt956

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A (1979) Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 254(19):9627–9632

    CAS  PubMed  Google Scholar 

  • Inaba K (2009) Disulfide bond formation system in Escherichia coli. J Biochem 146(5):591–597. doi:10.1093/Jb/Mvp102

    Article  CAS  PubMed  Google Scholar 

  • Kashima Y, Ishikawa K (2003) A hyperthermostable novel protein-disulfide oxidoreductase is reduced by thioredoxin reductase from hyperthermophilic archaeon Pyrococcus horikoshii. Arch Biochem Biophys 418(2):179–185. doi:10.1016/j.abb.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  • Ladenstein R, Ren B (2008) Reconsideration of an early dogma, saying “there is no evidence for disulfide bonds in proteins from archaea”. Extremophiles 12(1):29–38. doi:10.1007/s00792-007-0076-z

    Article  CAS  PubMed  Google Scholar 

  • Limauro D, Falciatore A, Basso AL, Forlani G, De Felice M (1996) Proline biosynthesis in Streptococcus thermophilus: characterization of the proBA operon and its products. Microbiology 142(Pt 11):3275–3282

    Article  CAS  PubMed  Google Scholar 

  • Limauro D, Pedone E, Galdi I, Bartolucci S (2008) Peroxiredoxins as cellular guardians in Sulfolobus solfataricus: characterization of Bcp1, Bcp3 and Bcp4. FEBS J 275(9):2067–2077. doi:10.1111/j.1742-4658.2008.06361.x

    Article  CAS  PubMed  Google Scholar 

  • Limauro D, Saviano M, Galdi I, Rossi M, Bartolucci S, Pedone E (2009) Sulfolobus solfataricus protein disulphide oxidoreductase: insight into the roles of its redox sites. Protein Eng Des Sel 22(1):19–26. doi:10.1093/protein/gzn061

    Article  CAS  PubMed  Google Scholar 

  • Limauro D, De Simone G, Pirone L, Bartolucci S, D’Ambrosio K, Pedone E (2013) Sulfolobus solfataricus thiol redox puzzle: characterization of an atypical protein disulfide oxidoreductase. Extremophiles. doi:10.1007/s00792-013-0607-8

    Google Scholar 

  • Lu J, Holmgren A (2013) The thioredoxin antioxidant system. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2013.07.036

    Google Scholar 

  • Pagani M, Fabbri M, Benedetti C, Fassio A, Pilati S, Bulleid NJ, Cabibbo A, Sitia R (2000) Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J Biol Chem 275(31):23685–23692. doi:10.1074/jbc.M003061200

    Article  CAS  PubMed  Google Scholar 

  • Pedone E, Saviano M, Rossi M, Bartolucci S (2001) A single point mutation (Glu85Arg) increases the stability of the thioredoxin from Escherichia coli. Protein Eng 14(4):255–260

    Article  CAS  PubMed  Google Scholar 

  • Pedone E, Ren B, Ladenstein R, Rossi M, Bartolucci S (2004) Functional properties of the protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus: a member of a novel protein family related to protein disulfide-isomerase. Eur J Biochem 271(16):3437–3448. doi:10.1111/j.0014-2956.2004.04282.x

    Article  CAS  PubMed  Google Scholar 

  • Pedone E, D’Ambrosio K, De Simone G, Rossi M, Pedone C, Bartolucci S (2006a) Insights on a new PDI-like family: structural and functional analysis of a protein disulfide oxidoreductase from the bacterium Aquifex aeolicus. J Mol Biol 356(1):155–164. doi:10.1016/j.jmb.2005.11.041

    Article  CAS  PubMed  Google Scholar 

  • Pedone E, Limauro D, D’Alterio R, Rossi M, Bartolucci S (2006b) Characterization of a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus. FEBS J 273(23):5407–5420. doi:10.1111/j.1742-4658.2006.05533.x

    Article  CAS  PubMed  Google Scholar 

  • Pedone E, Limauro D, D’Ambrosio K, De Simone G, Bartolucci S (2010) Multiple catalytically active thioredoxin folds: a winning strategy for many functions. Cell Mol Life Sci 67(22):3797–3814. doi:10.1007/s00018-010-0449-9

    Article  CAS  PubMed  Google Scholar 

  • Ren B, Tibbelin G, de Pascale D, Rossi M, Bartolucci S, Ladenstein R (1998) A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units (vol 5, pg 602, 1998). Nat Struct Biol 5(10):924. doi:10.1038/2766

    Article  CAS  Google Scholar 

  • Ruddon RW, Bedows E (1997) Assisted protein folding. J Biol Chem 272(6):3125–3128

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero A, Masullo M, Ruocco MR, Grimaldi P, Lanzotti MA, Arcari P, Zagari A, Vitagliano L (2009) Structure and stability of a thioredoxin reductase from Sulfolobus solfataricus: a thermostable protein with two functions. Bba-Proteins Proteom 1794(3):554–562. doi:10.1016/j.bbapap.2008.11.011

    Article  CAS  Google Scholar 

  • Ruocco MR, Ruggiero A, Masullo L, Arcari P, Masullo M (2004) A 35 kDa NAD(P)H oxidase previously isolated from the archaeon Sulfolobus solfataricus is instead a thioredoxin reductase. Biochimie 86(12):883–892. doi:10.1016/j.biochi.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  • Sanchez R, Roovers M, Glansdorff N (2000) Organization and expression of a Thermus thermophilus arginine cluster: presence of unidentified open reading frames and absence of a Shine-Dalgarno sequence. J Bacteriol 182(20):5911–5915. doi:10.1128/Jb.182.20.5911-5915.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato Y, Inaba K (2012) Disulfide bond formation network in the three biological kingdoms, bacteria, fungi and mammals. FEBS J 279(13):2262–2271. doi:10.1111/j.1742-4658.2012.08593.x

    Article  CAS  PubMed  Google Scholar 

  • Sevier CS, Kaiser CA (2006) Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1. Mol Biol Cell 17(5):2256–2266. doi:10.1091/mbc.E05-05-0417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sevier CS, Cuozzo JW, Vala A, Aslund F, Kaiser CA (2001) A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation. Nat Cell Biol 3(10):874–882. doi:10.1038/ncb1001-874

    Article  CAS  PubMed  Google Scholar 

  • Tanboon W, Chuchue T, Vattanaviboon P, Mongkolsuk S (2009) Inactivation of thioredoxin-like gene alters oxidative stress resistance and reduces cytochrome c oxidase activity in Agrobacterium tumefaciens. FEMS Microbiol Lett 295(1):110–116. doi:10.1111/j.1574-6968.2009.01591.x

    Article  CAS  PubMed  Google Scholar 

  • Vala A, Sevier CS, Kaiser CA (2005) Structural determinants of substrate access to the disulfide oxidase Erv2p. J Mol Biol 354(4):952–966. doi:10.1016/j.jmb.2005.09.076

    Article  CAS  PubMed  Google Scholar 

  • Yang XQ, Ma KS (2010) Characterization of a thioredoxin–thioredoxin reductase system from the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 192(5):1370–1376. doi:10.1128/Jb.01035-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the grants from MIUR for project FIRB no. RBRN07BMCT and Università Federico II di Napoli and “Compagnia di San Paolo” (Naples Laboratory) for “Programma F.A.R.O, IV° tornata”. We acknowledge Dr. Carmen Sarcinelli for her helpful technical assistance and the grant from POR CAMPANIA FSE 2007/2013 for PROGETTO CARINA CUP B25B09000080007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danila Limauro.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedone, E., Fiorentino, G., Pirone, L. et al. Functional and structural characterization of protein disulfide oxidoreductase from Thermus thermophilus HB27. Extremophiles 18, 723–731 (2014). https://doi.org/10.1007/s00792-014-0652-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0652-y

Keywords

Navigation