Skip to main content
Log in

Accumulation of polyhydroxyalkanoates by halophilic archaea isolated from traditional solar salterns of India

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Extremely halophilic archaeal isolates obtained from brine and sediment samples of solar salterns of Goa and Tamil Nadu, India were screened for accumulation of polyhydroxyalkanoates (PHA). Seven polymer accumulating haloarchaeal strains (TN4, TN5, TN6, TN7, TN9, TN10 and BBK2) were selected based on their growth and intensity of fluorescence when grown on 20 % NaCl synthetic medium supplemented with 2 % glucose and incorporated with Nile red dye. The polymer was quantified by conversion of PHA to crotonic acid which gave a characteristic absorption maxima at 235 nm. On the basis of phenotypic and genotypic characterization the cultures TN4, TN5, TN6, TN7, TN10 and BBK2 were grouped under genus Haloferax whereas isolate TN9 was grouped under the genus Halogeometricum. Growth kinetics and polymer accumulation studies revealed that the culture Halogeometricum borinquense strain TN9 accumulates PHA maximally at the mid-log phase, i.e. 5th day of growth (approx. 14 wt% PHA of CDW). Analysis of the polymer by IR, 1H NMR and 13C NMR confirmed it to be a homopolymer of 3-hydroxybutyrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PHA:

Polyhydroxyalkanoates

PHB:

Polyhydroxybutyrate

NTYE:

NaCl tryptone yeast extract

NT:

NaCl tri-sodium citrate

NSM:

NaCl synthetic media

DMSO:

Dimethylsulfoxide

PI:

Propidium iodide

w/v:

Weight by volume

EPS:

Exopolysaccharide

CDW:

Cell dry weight

rpm:

Revolutions per minute

IR:

Infra red

NMR:

Nuclear magnetic resonance

TGA:

Thermo gravimetric analysis

DTA:

Differential thermal analysis

References

  • Anton J, Meseguer I, Rodriguez-Valera F (1988) Production of an extracellular polysaccharide by Haloferax mediterranei. Appl Environ Microbiol 54:2381–2386

    PubMed  CAS  Google Scholar 

  • Anton J, Rossello-Mora R, Rodriguez-Valera F, Amann R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057

    Article  PubMed  CAS  Google Scholar 

  • Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented extremely halophilic archaeon from deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220

    Article  PubMed  CAS  Google Scholar 

  • Bragança JM, Furtado I (2009) Isolation and characterization of haloarchaea from low-salinity coastal sediments and waters of Goa. Curr Sci 96:1182–1184

    Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Zhuo L, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsby gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    Article  PubMed  CAS  Google Scholar 

  • Dyall-Smith M (2008) The halohandbook: protocols for halobacterial genetics. http://www.haloarchaea.com

  • Fang CJ, Ku KL, Lee MH, Su NW (2010) Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Bioresour Technol 101:6487–6493

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Castillo R, Rodriguez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F (1986) Accumulation of poly(β-hydroxybutyrate) by halobacteria. Appl Environ Microbiol 51:214–216

    PubMed  CAS  Google Scholar 

  • Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007) Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73:6058–6065

    Article  PubMed  CAS  Google Scholar 

  • Hezayen FF, Rehm BHA, Eberhardt R, Steinbuchel A (2000) Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 54:319–325

    Article  PubMed  CAS  Google Scholar 

  • Hezayen FF, Tindall BJ, Steinbuchel A, Rehm BHA (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. Nov. Int J Syst Evol Microbiol 52:2271–2280

    Article  CAS  Google Scholar 

  • Hezayen FF, Gutiérrez MC, Steinbüchel A, Tindall BJ, Rehm BH (2010) Halopiger aswanensis sp. nov., a polymer-producing and extremely halophilic archaeon isolated from hypersaline soil. Int J Syst Evol Microbiol 60:633–637

    Article  PubMed  CAS  Google Scholar 

  • Kirk RG, Ginzburg M (1972) Ultrastructure of two species of halobacterium. J Ultrasruct Res 41:80–94

    Article  CAS  Google Scholar 

  • Law JH, Slepecky RA (1961) Assay of poly-ß-hydroxybutyric acid. J Bacteriol 82:33–36

    PubMed  CAS  Google Scholar 

  • Legat A, Gruber C, Zangger K, Wanner G, Stan-Lotter H (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biotechnol 87:1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Lemoigne M (1923) Production d’acide β-oxybutyrique par certaines bact’eries du groupe du Bacillus subtilis. C R Hebd Seances Acad Sci 176:1761

    CAS  Google Scholar 

  • Lynch EA, Langille GIM, Darling A, Wilbanks EG, Haltiner C, Shao KSY, Starr MO, Teiling C, Harkins TT, Edwards RA, Eisen JA, Facciotti MT (2012) Sequencing of seven haloarchaeal genomes reveals patterns of genomic flux. PLoS One 7:e41389

    Article  PubMed  CAS  Google Scholar 

  • Mani K, Salgaonkar BB, Braganca JM (2012a) Culturable halophilic archaea at the initial and final stages of salt production in a natural solar saltern of Goa, India. Aquat Biosyst 8:15

    Article  PubMed  CAS  Google Scholar 

  • Mani K, Salgaonkar BB, Das D, Bragança JM (2012b) Community solar salt production in Goa, India. Aquat Biosyst 8:30

    Article  PubMed  Google Scholar 

  • Moreno ML, Pérez D, García MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38–51

    Article  CAS  Google Scholar 

  • Murray RGE, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Manual of methods for general microbiology. American Society for Microbiology, Washington, pp 21–41

    Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238

    Article  Google Scholar 

  • Osman S, Peeters Z, La Duc MT, Mancinelli R, Ehrenfreund P, Venkateswaran K (2008) Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Appl Environ Microbiol 74:959–970

    Article  PubMed  CAS  Google Scholar 

  • Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea ID 693253:1–13

    Article  Google Scholar 

  • Pramanik A, Mitra A, Arumugam M, Bhattacharyya A, Sadhukhan S, Ray A, Haldar S, Mukhopadhyay UK, Mukherjee J (2012) Utilization of vinasse for the production of polyhydroxybutyrate by Haloarcula marismortui. Folia Microbiol 57:71–79

    Article  CAS  Google Scholar 

  • Quillaguamán J, Doan-Van T, Guzmán H, Guzmán D, Martín J, Akaraonye Everest A, Hatti-Kaul R (2008) Poly(3-hydroxybutyrate) production by Halomonas boliviensis in fed-batch culture. Appl Microbiol Biotechnol 78:227–232

    Article  PubMed  Google Scholar 

  • Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  PubMed  Google Scholar 

  • Rawte T, Mavinkurve S (2002) A rapid hypochlorite method for extraction of polyhydroxyalkanoates from bacterial cells. Indian J Exp Biol 40:924–929

    PubMed  CAS  Google Scholar 

  • Rehm BHA (2007) Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailormade bioparticles. Curr Issues Mol Biol 9:41–62

    PubMed  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganism. Saline Syst 1:5

    Article  PubMed  Google Scholar 

  • Rodriguez-Valera F, Lillo JAG (1992) Halobacteria as producers of polyhydroxyalknoates. FEMS Microbiol Rev 103:181–186

    Article  CAS  Google Scholar 

  • Romano I, Poli A, Finore I, Huertas J, Gambacorta A, Pelliccione S, Nicolaus G, Lama L, Nicolaus B (2007) Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 57:1499–1503

    Article  PubMed  Google Scholar 

  • Salgaonkar BB, Kabilan M, Braganca JM (2011) Sensitivity of Haloarchaea to eubacterial pigments produced by Pseudomonas aeruginosa SB1. World J Microbiol Biotechnol 27:799–804

    Article  CAS  Google Scholar 

  • Salgaonkar BB, Kabilan M, Nair A, Sowmya G, Braganca JM (2012) Interspecific interactions among members of family Halobacteriaceae from natural solar salterns. Probiotics Antimicrob Proteins 4:98–107

    Article  CAS  Google Scholar 

  • Salgaonkar BB, Kabilan M, Bragança JM (2013) Characterization of polyhydroxyalkanotes accumulated by a moderately Halophilic Salt pan isolate Bacillus megaterium strain H16. J Appl Microbiol 114:1347–1356

    Article  PubMed  CAS  Google Scholar 

  • Seufferheld MJ, Kim KM, Whitfield J, Valerio A, Caetano-Anollés G (2011) Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome. Biol Direct 6:50

    Article  PubMed  CAS  Google Scholar 

  • Sharma L, Mallick N (2005) Accumulation of poly-b-hydroxybutyrate in Nostoc muscorum: regulation by pH, light–dark cycles, N and P status and carbon sources. Bioresour Technol 96:1304–1310

    Article  PubMed  CAS  Google Scholar 

  • Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  PubMed  CAS  Google Scholar 

  • Steinbüchel A, Füchtenbush B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  PubMed  Google Scholar 

  • Taran M, Amirkhani H (2010) Strategies of poly(3-hydroxybutyrate) synthesis by Haloarcula sp. IRU1 utilizing glucose as carbon source: optimization of culture conditions by Taguchi methodology. Int J Biol Macromol 47:632–634

    Article  PubMed  CAS  Google Scholar 

  • Tian PY, Shang L, Ren H, Mi Y, Fan DD, Jiang M (2009) Biosynthesis of polyhydroxyalkanoates: current research and development. Afr J Biotechnol 8:709–714

    CAS  Google Scholar 

  • Waino M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aeobic, extremely halophilic member of the archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190

    Article  PubMed  CAS  Google Scholar 

  • Xu XW, Ren PG, Liu SJ, Wu M, Zhou PJ (2005) Natrianema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun Mountain in Xinjiang, China. Int J Syst Evol Microbiol 55:1311–1314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by University Grants Commission, India (UGC) Major Research Project No: 34–500/2008(SR). BBS and KM would like to thank Council of Scientific and Industrial Research India for awarding Senior Research Fellowship (SRF) (09/919(0016)/2012-EMR-I and (09/919(0017)/2012-EMR-I). Authors are grateful to Dr. Narendra Nath Ghosh Department of Chemistry for helping with TGA–DTA analysis and Mr. Areef Sardar, NIO Goa for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Maria Bragança.

Additional information

Communicated by F. Robb

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2013_561_MOESM1_ESM.tif

Supplementary Fig. S1 Haloarchaeal isolates (BK20, BBK2, TN9 and BS2) grown on solid NTYE and NT media containing 25 % (w/v) NaCl (TIFF 1701 kb)

792_2013_561_MOESM2_ESM.tif

Supplementary Fig. S2 SEM micrographs of the Haloarchaeal isolates (a) TN5, (b) TN9, (c) BK20 and (d) BS16. (TIFF 1319 kb)

792_2013_561_MOESM3_ESM.tif

Supplementary Fig. S3 Extremely haloarchaeal cultures (TN5 and TN9) grown in 20 % NaCl synthetic medium (NSM) and 2 % glucose. (TIFF 2839 kb)

792_2013_561_MOESM4_ESM.tif

Supplementary Fig. S4 Spectrophotometric scans of Crotonic Acid of acid digested PHA obtained from haloarchaeal Isolate TN9, BBK2 and standard PHB (Sigma-Aldrich). (TIFF 212 kb)

Supplementary Fig. S5 Infrared spectrum of polymer obtained from TN9. (TIFF 182 kb)

Supplementary Fig. S6 1H NMR spectrum of polymer of TN9 (TIFF 140 kb)

Supplementary Fig. S7 13C NMR spectrum of polymer of TN9. (TIFF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgaonkar, B.B., Mani, K. & Bragança, J.M. Accumulation of polyhydroxyalkanoates by halophilic archaea isolated from traditional solar salterns of India. Extremophiles 17, 787–795 (2013). https://doi.org/10.1007/s00792-013-0561-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0561-5

Keywords

Navigation