Skip to main content
Log in

Geodermatophilus arenarius sp. nov., a xerophilic actinomycete isolated from Saharan desert sand in Chad

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A novel Gram-positive, aerobic, actinobacterial strain, CF5/4T, was isolated in 2007 during an environmental screening of arid desert soil in Ouré Cassoni, Chad. The isolate grew best in a temperature range of 28–40 °C and at pH 6.0–8.5, with 0–1 % (w/v) NaCl, forming brown-coloured and nearly circular colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G + C content of the novel strain was 75.9 mol %. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, diphosphatidylglycerol and a small amount of phosphatidylglycerol; MK-9(H4) was identified as the dominant menaquinone and galactose as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids: iso-C15:0 and iso-C16:0. The 16S rRNA gene showed 96.2–98.3 % sequence identity with the three members of the genus Geodermatophilus: G. obscurus (96.2 %), G. ruber (96.5 %), and G. nigrescens (98.3 %). Based on the chemotaxonomic results, 16S rRNA gene sequence analysis and DNA–DNA hybridization with the type strain of G. nigrescens, the isolate is proposed to represent a novel species, Geodermatophilus arenarius (type strain CF5/4T = DSM 45418T = MTCC 11413T = CCUG 62763T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  PubMed  CAS  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  PubMed  CAS  Google Scholar 

  • Giongo A, Favet J, Lapanje A, Gano KA, Kennedy S, Davis-Richardson AG, Brown C, Beck A, Farmerie WG, Cattaneo A, Crabb DB, Aung YY, Kort R, Brumsack HJ, Schnetger B, Broughton WJ, Gorbushina AA, Triplett EW (2012) Microbial hitchhikers on intercontinental dust: high- throughput sequencing to catalogue microbes in small sand samples. Aerobiologia. doi:10.1007/s10453-012-9264-0. Accepted June 6, 2012

  • Gordon RE, Smith MM (1955) Proposed group of characters for the separation of Streptomyces and Nocardia. J Bacteriol 69:147–150

    PubMed  CAS  Google Scholar 

  • Gregersen T (1978) Rapid method for distinction of gram-negative from positive bacteria. Appl Microbiol Biotechnol 5:123–127

    Article  Google Scholar 

  • Hess PN, De Moraes Russo CA (2007) An empirical test of the midpoint rooting method. Biol J Linn Soc 92:669–674

    Article  Google Scholar 

  • Huss VAR, Fest H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  Google Scholar 

  • Ivanova N, Sikorski J, Jando M, Munk C, Lapidus A, Glavina Del Rio T, Copeland A, Tice H, Cheng JF, Lucas S et al (2010) Complete genome sequence of Geodermatophilus obscurus type strain (G-20T). Stand Genomic Sci 2:158–167

    Article  PubMed  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger. J Liq Chromatogr 5:2359–2387

    Article  CAS  Google Scholar 

  • Kroppenstedt RM, Goodfellow M (2006) The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. In: Dworkin M, Falkow S, Schleifer KH, Stackebrandt E (eds) The prokaryotes, 3rd edn, vol 3. Archaea and Bacteria: Firmicutes, Actinomycetes. Springer, New York, pp 682–724

  • Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Lee C, Grasso C, Sharlow MF (2002) Multiple sequence alignment using partial order graphs. Bioinformatics 18:452–464

    Article  PubMed  CAS  Google Scholar 

  • List Editor (2012) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 62:2045–2047

    Google Scholar 

  • Luedemann GM (1968) Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetales). J Bacteriol 96:1848–1858

    PubMed  CAS  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Nie GX, Ming H, Li S, Zhou EM, Cheng J, Yu TT, Zhang J, Feng HG, Tang SK, Li WJ (2012) Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie Van Leeuwenhoek 101:811–817

    Article  PubMed  CAS  Google Scholar 

  • Normand P (2006) Geodermatophilaceae fam. nov., a formal description. Int J Syst Evol Microbiol 56:2277–2278

    Article  PubMed  CAS  Google Scholar 

  • Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9

    Article  PubMed  CAS  Google Scholar 

  • Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A (2009) How many bootstrap replicates are necessary? Lect Notes Comput Sci 5541:184–200

    Article  CAS  Google Scholar 

  • Pelczar MJ Jr (ed) (1957) Manual of microbiological methods. McGraw-Hill Book Co., New York

    Google Scholar 

  • Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsiaceae fam. nov. Int J Syst Bacteriol 46:28–96

    Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0 b10. Sinauer Associates, Sunderland

  • Tindall BJ, Sikorski J, Simbert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Reddy CA (Editor in Chief) Methods for general and molecular microbiology. ASM Press, Washington, pp 330–393

    Google Scholar 

  • Urzì C, Brusetti L, Salamone P, Sorlini C, Stackebrandt E, Daffonchio D (2001) Biodiversity of Geodermatophilaceae isolated from stones and monuments in the Mediterranean basin. Environ Microbiol 3:471–479

    Article  PubMed  Google Scholar 

  • Vaas LAI, Sikorski J, Michael V, Göker M, Klenk HP (2012) Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS ONE 7:e34846

    Article  PubMed  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Zhang YQ, Chen J, Liu HY, Zhang YQ, Li WJ, Yu LY (2011) Geodermatophilus ruber sp. nov., isolated from rhizosphere soil of a medical plant. Int J Syst Evol Microbiol 61:190–193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to gratefully acknowledge the help of Agathe Stricker of the International Committee of the Red Cross in Geneva, Switzerland, for organizing the collection of the sand samples from which strain CF5/4T was isolated. Jocelyne Favet, Arlette Cattaneo and William J. Broughton of the Laboratoire de Biologie Moléculaire de Plantes Supérieures (University of Geneva, Switzerland) are acknowledged for their contribution to the isolation of the strain, and Brian J. Tindall (DSMZ, Braunschweig) for his guidance in chemotaxonomical analyses. M.C. Montero-Calasanz is the recipient of a postdoctoral contract from European Social Fund Operational Programme (2007–2013) for Andalusia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Gorbushina or H.-P. Klenk.

Additional information

Communicated by A. Oren.

The INSDC accession number for the 16S rRNA gene sequence of strain CF5/4T is HE654547.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2012_486_MOESM1_ESM.pdf

Fig. S1. The parameter “Maximum Height” estimated from the respiration curves as measured with the OmniLog phenotyping device and visualized as heatmap using the opm package. Plates and substrates are rearranged according to their overall similarity (as depicted using the row and column dendrograms). First picture, heatmap inferred from the discretized values; second picture, heatmap inferred from the original “Maximum Height” measurements, standardized per row; third picture, heatmap inferred from the original “Maximum Height” measurements, not standardized. (PDF 36 kb)

792_2012_486_MOESM2_ESM.tif

Fig. S2. Polar lipids profile of Geodermatophilus arenarius sp. nov. CF5/4T after separation by two-dimensional TLC. Plate was sprayed with molybdatophosphoric acid for detection of total polar lipids. DPG, diphosphatidylglycerol; PE, phosphatidylethanolamine; PC, phosphatidylcholine; PI, phosphatidylinositol; PG, phosphatidylglycerol; GL, glycolipid. (TIFF 594 kb)

792_2012_486_MOESM3_ESM.docx

Table S1. Fatty acids profiles (%) of strain CF5/4T and the type strains of other Geodermatophilus species. Strains: 1, G. arenarius sp. nov. CF5/4T (DSM 45418T); 2, G. obscurus G-20T (DSM 43160T); 3, G. ruber CPCC 21356T (DSM 45317T); 4, G. nigrescens YIM 75980T (DSM 45408T). (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montero-Calasanz, M.C., Göker, M., Pötter, G. et al. Geodermatophilus arenarius sp. nov., a xerophilic actinomycete isolated from Saharan desert sand in Chad. Extremophiles 16, 903–909 (2012). https://doi.org/10.1007/s00792-012-0486-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0486-4

Keywords

Navigation