Skip to main content
Log in

Translational recoding in archaea

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Translational recoding includes a group of events occurring during gene translation, namely stop codon readthrough, programmed ±1 frameshifting, and ribosome bypassing, which have been found in organisms from all domains of life. They serve to regulate protein expression at translational level and represent a relatively less known exception to the traditional central ‘dogma’ of biology that information flows as DNA→RNA→protein and that it is stored in a co-linear way between the 5′→3′ of nucleic acids and N→C-terminal of polypeptides. In archaea, in which translational recoding regulates the decoding of the 21st and the 22nd amino acids selenocysteine and pyrrolysine, respectively, only one case of programmed −1 frameshifting has been reported so far and further examples, although promising, have not been confirmed yet. We here summarize the current state-of-the-art of this field that, especially in archaea, has relevant implications for the physiology of life in extreme environments and for the origin of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Sec:

Selenocysteine

SECIS:

Selenocysteine inserting sequence

3′-UTR:

3′ untranslated region

SBP2:

SECIS-binding protein 2

Pyl:

Pyrrolysine

MtmB, MtbB, and MttB, respectively:

Mono-, di-, and trimethylamine methyltransferases

PYLIS:

Pyrrolysine insertion element

Thg1:

tRNAHis-guanylyltransferase

MALDIMS:

Matrix-assisted laser desorption/ionization mass spectrometry

LCMSMS:

Liquid chromatography online tandem mass spectrometry

fucA1 :

α-Fucosidase gene from S. solfataricus

RT-PCR:

Reverse transcriptase

ICDS:

Interrupted CoDing Sequence program

References

  • Alkalaeva E, Eliseev B, Ambrogelly A, Vlasov P, Kondrashov FA, Gundllapalli S, Frolova L, Soll D, Kisselev L (2009) Translation termination in pyrrolysine-utilizing archaea. FEBS Lett 583:3455–3460

    Article  PubMed  CAS  Google Scholar 

  • Allmang C, Wurth L, Krol A (2009) The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta 1790:1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Ambrogelly A, Palioura S, Soll D (2007) Natural expansion of the genetic code. Nat Chem Biol 3:29–35

    Article  PubMed  CAS  Google Scholar 

  • Arner ESJ, Holmgren A (2006) The thioredoxin system in cancer. Semin Cancer Biol 16:420–426

    Article  PubMed  CAS  Google Scholar 

  • Atkinson GC, Hauryliuk V, Tenson T (2011) An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea. BMC Evol Biol 11:22–31

    Google Scholar 

  • Axley MJ, Bock A, Stadtman TC (1991) Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc Natl Acad Sci USA 88:8450–8454

    Article  PubMed  CAS  Google Scholar 

  • Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “Junk” or functional DNA? Annu Rev Genet 37:123–151

    Article  PubMed  CAS  Google Scholar 

  • Baranov PV, Gesteland RF, Atkins JF (2002) Recoding: translational bifurcations in gene expression. Gene 286:187–201

    Article  PubMed  CAS  Google Scholar 

  • Blight SK, Larue RC, Mahapatra A, Longstaff DG, Chang E, Zhao G, Kang PT, Church–Church KB, Chan MK, Krzycki JA (2004) Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo. Nature 431:333–335

    Article  PubMed  CAS  Google Scholar 

  • Bock A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5:515–520

    Article  PubMed  CAS  Google Scholar 

  • Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield DL (2004) Identification and characterization of phosphoseryl-tRNA([Ser]Sec) kinase. Proc Natl Acad Sci USA 101:12848–12853

    Article  PubMed  CAS  Google Scholar 

  • Chambers I, Frampton J, Goldfarb P, Affara N, McBain W, Harrison PR (1986) The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘termination’ codon, TGA. EMBO J 5:1221–1227

    PubMed  CAS  Google Scholar 

  • Chavatte L, Brown BA, Driscoll DM (2005) Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat Struct Mol Biol 12:408–416

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Trincone A, Giordano A, Rossi M, Moracci M (2003a) Identification of an archaeal alpha-l-fucosidase encoded by an interrupted gene—production of a functional enzyme by mutations mimicking programmed-1 frameshifting. J Biol Chem 278:14622–14631

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Trincone A, Giordano A, Rossi M, Moracci M (2003b) Identification of the catalytic nucleophile of the family 29 alpha-L-fucosidase from Sulfolobus solfataricus via chemical rescue of an inactive mutant. Biochemistry 42:9525–9531

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Mazzone M, Rossi M, Moracci M (2005a) Probing the catalytically essential residues of the alpha-l-fucosidase from the hyperthermophilic Archaeon Sulfolobus solfataricus. Biochemistry 44:6331–6342

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Rossi M, Moracci M (2005b) Recoding in archaea. Mol Microbiol 55:339–348

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Conte F, Benelli D, Londei P, Flagiello A, Monti M, Pucci P, Rossi M, Moracci M (2006) The gene of an archaeal alpha-l-fucosidase is expressed by translational frameshifting. Nucleic Acids Res 34:4258–4268

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Conte F, Bedini E, Corsaro MM, Parrilli M, Sulzenbacher G, Lipski A, Dal Piaz F, Lepore L, Rossi M, Moracci M (2009) beta-Glycosyl azides as substrates for alpha-glycosynthases: preparation of efficient alpha-l-fucosynthases. Chem Biol 16:1097–1108

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Guzzini L, Benelli D, Londei P, Perrodou E, Lecompte O, Tran D, Sun J, Wei J, Mathur EJ, Rossi M, Moracci M (2010) Functional characterization and high-throughput proteomic analysis of interrupted genes in the archaeon Sulfolobus solfataricus. J Proteome Res 9:2496–2507

    Article  PubMed  CAS  Google Scholar 

  • Cone JE, Del Rio RM, Davis JN, Stadtman TC (1976) Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc Natl Acad Sci USA 73:2659–2663

    Article  PubMed  CAS  Google Scholar 

  • Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM (2000) A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J 19:306–314

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Dinman JD, Kinzy TG, Peltz SW (1998) The Mof2/Sui1 protein is a general monitor of translational accuracy. Mol Cell Biol 18:1506–1516

    PubMed  CAS  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Baumer S, Jacobi C, Bruggemann H, Lienard T, Christmann A, Bomeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk HP, Gunsalus RP, Fritz HJ, Gottschalk G (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microb Biotech 4:453–461

    CAS  Google Scholar 

  • Dinman JD (2012) Control of gene expression by translational recoding. Adv Protein Chem Struct Biol 86:129–149

    Article  PubMed  CAS  Google Scholar 

  • Farabaugh PJ (1996) Programmed translational frameshifting. Microbiol Rev 60:103

    PubMed  CAS  Google Scholar 

  • Fekner T, Li X, Lee MM, Chan MK (2009) A pyrrolysine analogue for protein click chemistry. Angew Chem Int Ed 48:1633–1635

    Article  CAS  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye WJ, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li WX, Liu JF, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, de Macario EC, Ferry JG, Jarrell KF, Jing H, Macario AJL, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  PubMed  CAS  Google Scholar 

  • Gaston MA, Jiang RS, Krzycki JA (2011a) Functional context, biosynthesis, and genetic encoding of pyrrolysine. Curr Opin Microbiol 14:342–349

    Article  PubMed  CAS  Google Scholar 

  • Gaston MA, Zhang LW, Green-Church KB, Krzycki JA (2011b) The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine. Nature 471:647–650

    Article  PubMed  CAS  Google Scholar 

  • Gautier A, Deiters A, Chin JW (2011) Light-activated kinases enable temporal dissection of signaling networks in living cells. J Am Chem Soc 133:2124–2127

    Article  PubMed  CAS  Google Scholar 

  • Gesteland RF, Atkins JF (1996) Recoding: dynamic reprogramming of translation. Annu Rev Biochem 65:741–768

    Article  PubMed  CAS  Google Scholar 

  • Goodchild A, Saunders NFW, Ertan H, Raftery M, Guilhaus M, Curmi PMG, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Brugger K, Liu C, Shah SA, Zheng HJ, Zhu YQ, Wang SY, Lillestol RK, Chen LM, Frank J, Prangishvili D, Paulin L, She QX, Huang L, Garrett RA (2011) Genome analyses of Icelandic strains of Sulfolobus islandicus, model organisms for genetic and virus–host interaction studies. J Bacteriol 193:1672–1680

    Article  PubMed  CAS  Google Scholar 

  • Halboth S, Klein A (1992) Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reducing or F420-non-reducing types. Mol Gen Genet 233:217–224

    Article  PubMed  CAS  Google Scholar 

  • Hancock SM, Uprety R, Deiters A, Chin JW (2010) Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J Am Chem Soc 132:14819–14824

    Article  PubMed  CAS  Google Scholar 

  • Hao B, Gong WM, Ferguson TK, James CM, Krzycki JA, Chan MK (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296:1462–1466

    Article  PubMed  CAS  Google Scholar 

  • Hao B, Zhao G, Kang PT, Soares JA, Ferguson TK, Gallucci J, Krzycki JA, Chan MK (2004) Reactivity and chemical synthesis of l-pyrrolysine—the 22(nd) genetically encoded amino acid. Chem Biol 11:1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Harrison PM, Gerstein M (2002) Studying Genomes through the aeons: protein families, pseudogenes and proteome evolution. J Mol Biol 318:1155–1174

    Article  PubMed  CAS  Google Scholar 

  • Heinemann IU, O’Donoghue P, Madinger C, Benner J, Randau L, Noren CJ, Soll D (2009) The appearance of pyrrolysine in tRNA(His) guanylyltransferase by neutral evolution. Proc Natl Acad Sci USA 106:21103–21108

    Article  PubMed  CAS  Google Scholar 

  • Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K, Wynshaw-Boris A, Yoshiki A (2003) An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423:91–96

    Article  PubMed  CAS  Google Scholar 

  • James CM, Ferguson TK, Leykam JF, Krzycki JA (2001) The amber codon in the gene encoding the monomethylamine methyltransferase isolated from Methanosarcina barkeri is translated as a sense codon. J Biol Chem 276:34252–34258

    Article  PubMed  CAS  Google Scholar 

  • Jones JB, Stadtman TC (1981) Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form. J Biol Chem 256:656–663

    PubMed  CAS  Google Scholar 

  • Jones JB, Dilworth GL, Stadtman TC (1979) Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vannielii. Arch Biochem Biophys 195:255–260

    Article  PubMed  CAS  Google Scholar 

  • Kaiser JT, Gromadski K, Rother M, Engelhardt H, Rodnina MV, Wahl MC (2005) Structural and functional investigation of a putative archaeal selenocysteine synthase. Biochemistry 44:13315–13327

    Article  PubMed  CAS  Google Scholar 

  • Kohrle J, Brigelius-Flohe R, Bock A, Gartner R, Meyer O, Flohe L (2000) Selenium in biology: facts and medical perspectives. Biol Chem 381:849–864

    Article  CAS  Google Scholar 

  • Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Rep 5:538–543

    Article  PubMed  CAS  Google Scholar 

  • Krzycki JA (2004) Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases. Curr Opin Chem Biol 8:484–491

    Article  PubMed  CAS  Google Scholar 

  • Krzycki JA (2005) The direct genetic encoding of pyrrolysine. Curr Opin Microbiol 8:706–712

    Article  PubMed  CAS  Google Scholar 

  • Kyrpides NC, Woese CR (1998) Universally conserved translation initiation factors. Proc Natl Acad Sci USA 95:224–228

    Article  PubMed  CAS  Google Scholar 

  • Li X, Fekner T, Ottesen JJ, Chan MK (2009) A pyrrolysine analogue for site-specific protein ubiquitination. Angew Chem Int Ed 48:9184–9187

    Article  CAS  Google Scholar 

  • Longstaff DG, Blight SK, Zhang LW, Green-Church KB, Krzycki JA (2007a) In vivo contextual requirements for UAG translation as pyrrolysine. Mol Microbiol 63:229–241

    Article  PubMed  CAS  Google Scholar 

  • Longstaff DG, Larue RC, Faust JE, Mahapatra A, Zhang LW, Green-Church KB, Krzycki JA (2007b) A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine. Proc Natl Acad Sci USA 104:1021–1026

    Article  PubMed  CAS  Google Scholar 

  • Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, Sowers KR (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922–7931

    Article  PubMed  CAS  Google Scholar 

  • Namy O, Rousset JP, Napthine S, Brierley I (2004) Reprogrammed genetic decoding in cellular gene expression. Mol Cell 13:157–168

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Peak-Chew SY, Chin JW (2008) Genetically encoding N-epsilon-acetyllysine in recombinant proteins. Nat Chem Biol 4:232–234

    Article  PubMed  CAS  Google Scholar 

  • Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Soll D, Nureki O (2009) Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality. Nature 457:1163–1167

    Article  PubMed  CAS  Google Scholar 

  • Perrodou E, Deshayes C, Muller J, Schaeffer C, Van Dorsselaer A, Ripp R, Poch O, Reyrat JM, Lecompte O (2006) ICDS database: interrupted CoDing sequences in prokaryotic genomes. Nucl Acids Res 34:D338–D343

    Article  PubMed  CAS  Google Scholar 

  • Pinsent J (1954) The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem J 57:10–16

    PubMed  CAS  Google Scholar 

  • Polycarpo C, Ambrogelly A, Berube A, Winbush SAM, McCloskey JA, Crain PF, Wood JL, Soll D (2004) An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci USA 101:12450–12454

    Article  PubMed  CAS  Google Scholar 

  • Rosano C, Zuccotti S, Cobucci-Ponzano B, Mazzone M, Rossi M, Moracci M, Petoukhov MV, Svergun DI, Bolognesi M (2004) Structural characterization of the nonameric assembly of an Archaeal alpha-l-fucosidase by synchrotron small angle X-ray scattering. Biochem Biophys Res Commun 320:176–182

    Article  PubMed  CAS  Google Scholar 

  • Rother M, Krzycki JA (2010) Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. Archaea Int Microbiol J

  • Rother M, Wilting R, Commans S, Bock A (2000) Identification and characterisation of the selenocysteine-specific translation factor SelB from the archaeon Methanococcus jannaschii. J Mol Biol 299:351–358

    Article  PubMed  CAS  Google Scholar 

  • Rother M, Resch A, Wilting R, Bock A (2001) Selenoprotein synthesis in archaea. BioFactors 14:75–83

    Article  PubMed  CAS  Google Scholar 

  • Sekine Y, Eisaki N, Ohtsubo E (1994) Translational control in production of transposase and in transposition of insertion sequence-Is3. J Mol Biol 235:1406–1420

    Article  PubMed  CAS  Google Scholar 

  • Sharma V, Firth AE, Antonov I, Fayet O, Atkins JF, Borodovsky M, Baranov PV (2011) A pilot study of bacterial genes with disrupted ORFs reveals a surprising profusion of protein sequence recoding mediated by ribosomal frameshifting and transcriptional realignment. Mol Biol Evol 28:3195–3211

    Article  PubMed  CAS  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CCY, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PMK, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  PubMed  CAS  Google Scholar 

  • Sorgenfrei O, Linder D, Karas M, Klein A (1993) A novel very small subunit of a selenium containing [NiFe] hydrogenase of Methanococcus voltae is post-translationally processed by cleavage at a defined position. Eur J Biochem 213:1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Squires JE, Berry MJ (2008) Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life 60:232–235

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in archaea: charging of a UAG-decoding specialized tRNA. Science 296:1459–1462

    Article  PubMed  CAS  Google Scholar 

  • Stock T, Rother M (2009) Selenoproteins in archaea and gram-positive bacteria. Biochim Biophys Acta 1790:1520–1532

    Article  PubMed  CAS  Google Scholar 

  • Stock T, Selzer M, Rother M (2010) In vivo requirement of selenophosphate for selenoprotein synthesis in archaea. Mol Microbiol 75:149–160

    Article  PubMed  CAS  Google Scholar 

  • van Passel MW, Smillie CS, Ochman H (2007) Gene decay in archaea. Archaea 2:137–143

    Article  PubMed  Google Scholar 

  • Vorholt JA, Vaupel M, Thauer RK (1997) A selenium-dependent and a selenium-independent formylmethanofuran dehydrogenase and their transcriptional regulation in the hyperthermophilic Methanopyrus kandleri. Mol Microbiol 23:1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Wilting R, Schorling S, Persson BC, Bock A (1997) Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion. J Mol Biol 266:637–641

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Hendrix RW, Duda RL (2004) Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 16:11–21

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008a) Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase. J Mol Biol 378:634–652

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008b) Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-Azidobenzyloxycarbonyl) lysine for Site-specific protein modification. Chem Biol 15:1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Palioura S, Salazar JC, Su D, O’Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Soll D (2006) RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci USA 103:18923–18927

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Baranov PV, Atkins JF, Gladyshev VN (2005) Pyrrolysine and selenocysteine use dissimilar decoding strategies. J Biol Chem 280:20740–20751

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Romero H, Salinas G, Gladyshev VN (2006) Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome Biol 7:R94

    Article  PubMed  Google Scholar 

  • Zinoni F, Birkmann A, Stadtman TC, Bock A (1986) Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc Natl Acad Sci USA 83:4650–4654

    Article  PubMed  CAS  Google Scholar 

  • Zinoni F, Birkmann A, Leinfelder W, Bock A (1987) Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc Natl Acad Sci USA 84:3156–3160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the project MoMa n. 1/014/06/0 of the Agenzia Spaziale Italiana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Moracci.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobucci-Ponzano, B., Rossi, M. & Moracci, M. Translational recoding in archaea. Extremophiles 16, 793–803 (2012). https://doi.org/10.1007/s00792-012-0482-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0482-8

Keywords

Navigation