Skip to main content
Log in

Requirement of insertion sequence IS1 for thermal adaptation of Pro-Tk-subtilisin from hyperthermophilic archaeon

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Tk-subtilisin from the hyperthermophilic archaeon Thermococcus kodakarensis matures from Pro-Tk-subtilisin (Pro-TKS) upon autoprocessing and degradation of propeptide. Pro-TKS contains the insertion sequence (IS1) at the N-terminus of the mature domain as compared to bacterial pro-subtilisins. To analyze the role of IS1, the Pro-TKS derivative without IS1 (∆IS1-Pro-TKS) and its active-site mutants (∆IS1-Pro-S324A and ∆IS1-Pro-S324C) were constructed and characterized. ∆IS1-Pro-S324A and ∆IS1-Pro-TKS represent an unautoprocessed and autoprocessed form of ∆IS1-Pro-TKS, respectively. The CD and ANS fluorescence spectra of these proteins indicate that folding of ∆IS1-Pro-TKS is not completed by binding of Ca2+ ions but is completed by the subsequent autoprocessing reaction. Thermal denaturation of these proteins analyzed by DSC and CD spectroscopy indicates that unautoprocessed ∆IS1-Pro-TKS is less stable than autoprocessed ∆IS1-Pro-TKS by 26.3 °C in T m. The stability of autoprocessed ∆IS1-Pro-TKS is comparable to that of Pro-TKS, which is slightly lower than that of unautoprocessed Pro-TKS. These results suggest that ∆IS1-Pro-TKS is fully folded and greatly stabilized by autoprocessing. ∆IS1-Pro-TKS more slowly matured to ∆IS1-Tk-subtilisin than Pro-TKS did, due to a decrease in the autoprocessing rate. We propose that IS1 is required not only for hyperstabilization of Pro-TKS but also for its rapid maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Tk-subtilisin:

A subtilisin homolog from Thermococcus kodakarensis (Gly70-Gly398)

Pro-TKS:

Tk-subtilisin in a pro-form (Gly1-Gly398)

Tkpro:

Propeptide of Tk-subtilisin (Gly1-Leu69)

IS1:

First insertion sequence (Gly70-Pro82)

Pro-S324A (S324C):

Pro-TKS with the Ser324 → Ala (Ser324 → Cys) mutation

∆IS1-Pro-TKS (S324A, S324C):

Pro-TKS (S324A, S324C) derivative with IS1 deleted

Suc-AAPF-pNA:

N-succinyl-Ala–Ala-Pro-Phe-p-nitroanilide

Tricine:

N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine

CD:

Circular dichroism

TCA:

Trichloroacetic acid

DSC:

Differential scanning calorimetry

GdnHCl:

Guanidine hydrochloride

DTT:

Dithiothreitol

ANS:

1-Anillino-8-napthalene sulfonic acid

CBB:

Coomassie Brilliant Blue

References

  • Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267

    Article  PubMed  CAS  Google Scholar 

  • Bryan PN (2002) Prodomain and protein folding catalysis. Chem Rev 102:4805–4816

    Article  PubMed  CAS  Google Scholar 

  • Bryan PN, Alexander P, Strausberg S, Schwarz F, Lan W, Gilliland G, Gallagher DT (1992) Energetics of folding subtilisin BPN’. Biochemistry 31:4937–4945

    Article  PubMed  CAS  Google Scholar 

  • Catara G, Ruggiero G, La Cara F, Digilio FA, Capasso A, Rossi M (2003) A novel extracellular subtilisin-like protease from the hyperthermophile Aeropyrum pernix K1: biochemical properties, cloning, and expression. Extremophiles 7:391–399

    Article  PubMed  CAS  Google Scholar 

  • Chen YJ, Inouye M (2008) The intramolecular chaperone-mediated protein folding. Curr Opin Struct Biol 18:765–770

    Article  PubMed  CAS  Google Scholar 

  • Eder J, Fersht AR (1995) Pro-sequences assisted protein folding. Mol Microbiol 16:609–614

    Article  PubMed  CAS  Google Scholar 

  • Eder J, Rheinnecker M, Fersht AR (1993) Folding of subtilisin BPN’: role of the pro-sequence. J Mol Biol 233:293–304

    Article  PubMed  CAS  Google Scholar 

  • Foophow T, Tanaka S, Koga Y, Takano K, Kanaya S (2010) Subtilisin-like serine protease from hyperthermophilic archaeon Thermococcus kodakaraensis with N- and C-terminal propeptides. Protein Eng Des Sel 23:347–355

    Article  PubMed  CAS  Google Scholar 

  • Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TW, Morton RA (1946) The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J 40:628–632

    PubMed  CAS  Google Scholar 

  • Kannan Y, Koga Y, Inoue Y, Haruki M, Takagi M, Imanaka T, Morikawa M, Kanaya S (2001) Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence. Appl Environ Microbiol 67:2445–2452

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima K (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6:87–103

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Pantoliano MW, Whitlow M, Wood JF, Dodd SW, Hardman KD, Rollence ML, Bryan PN (1989) Large increases in general stability for subtilisin BPN’ through incremental changes in the free energy of unfolding. Biochemistry 28:7205–7213

    Article  PubMed  CAS  Google Scholar 

  • Pulido M, Saito K, Tanaka S, Koga Y, Morikawa M, Takano K, Kanaya S (2006) Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: the propeptide is a potent inhibitor of the mature domain but is not required for its folding. Appl Environ Microbiol 72:4154–4162

    Article  PubMed  CAS  Google Scholar 

  • Pulido M, Koga Y, Takano K, Kanaya S (2007a) Directed evolution of Tk-subtilisin from a hyperthermophilic archaeon: identification of a single amino acid substitution in the propeptide region responsible for low-temperature adaptation. Protein Eng Des Sel 20:143–153

    Article  PubMed  CAS  Google Scholar 

  • Pulido M, Tanaka S, Sringiew C, You DJ, Matsumura H, Koga Y, Takano K, Kanaya S (2007b) Requirement of left-handed glycine residue for high stability of the Tk-subtilisin propeptide as revealed by mutational and crystallographic analyses. J Mol Biol 374:1359–1373

    Article  PubMed  CAS  Google Scholar 

  • Schäfer T, Borchert TW, Nielsen VS, Skagerlind P, Gibson K, Wenger K, Hatzack F, Nilsson LD, Salmon S, Pedersen S, Heldt-Hansen HP, Poulsen PB, Lund H, Oxenbøll KM, Wu GF, Pedersen HH, Xu H (2007) Industrial enzymes. Adv Biochem Eng Biotechnol 105:59–131

    PubMed  Google Scholar 

  • Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  • Shinde UP, Inouye M (1995) Folding pathway mediated by an intramolecular chaperone: characterization of the structural changes in pro-subtilisin E coincident with autoprocessing. J Mol Biol 252:25–30

    Article  PubMed  CAS  Google Scholar 

  • Shinde UP, Inouye M (1996) Propeptide-mediated folding in subtilisin: the intramolecular chaperone concept. Adv Exp Med Biol 379:147–154

    Article  PubMed  CAS  Google Scholar 

  • Shinde UP, Inouye M (2000) Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin Cell Dev Biol 11:35–44

    Article  PubMed  CAS  Google Scholar 

  • Siezen RJ, Leunissen JA (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523

    Article  PubMed  CAS  Google Scholar 

  • Takemasa R, Yokooji Y, Yamatsu A, Atomi H, Imanaka T (2011) Thermococcus kodakarensis as a host for gene expression and protein secretion. Appl Environ Microbiol 77:2392–2398

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Tanaka S, Matsumura H, Koga Y, Takano K, Kanaya S (2009) Requirement of a unique Ca2+-binding loop for folding of Tk-subtilisin from a hyperthermophilic archaeon. Biochemistry 48:10637–10643

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Matsumura H, Koga Y, Takano K, Kanaya S (2007a) Four new crystal structures of Tk-subtilisin in unautoprocessed, autoprocessed and mature forms: insight into structural changes during maturation. J Mol Biol 372:1055–1069

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Saito K, Chon H, Matsumura H, Koga Y, Takano K, Kanaya S (2007b) Crystal structure of unautoprocessed precursor of subtilisin from a hyperthermophilic archaeon: evidence for Ca2+-induced folding. J Biol Chem 282:8246–8255

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Takeuchi Y, Matsumura H, Koga Y, Takano K, Kanaya S (2008) Crystal structure of Tk-subtilisin folded without propeptide: requirement of propeptide for acceleration of folding. FEBS Lett 582:3875–3878

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Matsumura H, Koga Y, Takano K, Kanaya S (2009) Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin. J Mol Biol 394:306–319

    Article  PubMed  CAS  Google Scholar 

  • Uehara R, Takeuchi Y, Tanaka S, Takano K, Koga Y, Kanaya S (2012) Requirement of Ca2+ ions for the hyperthermostability of Tk-subtilisin from Thermococcus kodakarensis. Biochemistry 51:5369–5378

    Article  PubMed  CAS  Google Scholar 

  • Voordouw G, Milo C, Roche RS (1976) Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry 15:3716–3724

    Article  PubMed  CAS  Google Scholar 

  • Yabuta Y, Subbian E, Takagi H, Shinde UP, Inouye M (2002) Folding pathway mediated by an intramolecular chaperone: dissecting conformational changes coincident with autoprocessing and the role of Ca2+ in subtilisin maturation. J Biochem 131:31–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant (24380055) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and by an Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization (NEDO) of Japan. One of the authors (R. Uehara) expresses his special thanks for the Global COE (center of excellence) Program “Global Education and Research Center for Bio-Environmental Chemistry” of Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenori Kanaya.

Additional information

Communicated by H. Atomi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uehara, R., Tanaka, Si., Takano, K. et al. Requirement of insertion sequence IS1 for thermal adaptation of Pro-Tk-subtilisin from hyperthermophilic archaeon. Extremophiles 16, 841–851 (2012). https://doi.org/10.1007/s00792-012-0479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0479-3

Keywords

Navigation