Skip to main content
Log in

Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are highly reduced bacterial storage compounds that increase fitness in changing environments. It has previously shown that polyhydroxybutyrate (PHB) accumulation is essential during the growth under cold conditions. In this work, the relationship between PHB accumulation and biofilm development at low temperature was investigated. P. extremaustralis, an Antarctic strain able to accumulate PHB, and its phaC mutant, impaired in the synthesis of this polymer, were used to analyze microaerobic growth, biofilm development, EPS content and motility. PHB accumulation increased motility and survival of planktonic cells in the biofilms developed by P. extremaustralis under cold conditions. Microaerobic conditions rescued the cold growth defect of the mutant strain. The PHB accumulation capability could constitute an adaptative advantage for the colonization of new ecological niches in stressful environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albesa I, Becerra MC, Battan PC, Paez PL (2004) Oxidative stress involved in the antibacterial action of different antibiotics. Biochem Biophys Res Commun 317:605–609

    Article  PubMed  CAS  Google Scholar 

  • Ayub ND, Pettinari MJ, Méndez BS, López NI (2006) Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14–3 is due to a defective beta-ketothiolase gene. FEMS Microbiol Lett 264:25–131

    Article  Google Scholar 

  • Ayub ND, Pettinari MJ, Méndez BS, López NI (2007) The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid 58:240–248

    Article  PubMed  CAS  Google Scholar 

  • Ayub ND, Tribelli PM, López NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14–3 during low temperature adaptation. Extremophiles 13:59–66

    Article  PubMed  CAS  Google Scholar 

  • Branda SS, Ashild V, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  PubMed  CAS  Google Scholar 

  • Bylund J, Burgess LA, Cescutti P, Ernst RK, Speert DP (2006) Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem 281:2526–2532

    Article  PubMed  CAS  Google Scholar 

  • Caiazza NC, Merritt HJ, Brothers JM, O’Toole GA (2007) Inverse Regulation of Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:3603–3612

    Article  PubMed  CAS  Google Scholar 

  • Chang WS, Li X, Halverson LJ (2009) Influence of water limitation on endogenous oxidative stress and cell death within unsaturated Pseudomonas putida biofilms. Environ Microbiol 11:1482–1492

    Article  PubMed  Google Scholar 

  • Chattopadhyay MK, Raghu G, Sharma YV, Biju AR, Rajasekharan MV, Shivaji S (2011) Increase in oxidative stress at low temperature in an Antarctic Bacterium. Curr Microbiol 62:544–546

    Article  PubMed  CAS  Google Scholar 

  • Chesson P, Gebauer RL, Schwinning S, Huntly N, Wiegand K, Ernest MS, Sher A, Novoplansky A, Weltzin JF (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253

    Article  PubMed  Google Scholar 

  • Cochran WL, McFeters GA, Stewart PS (2001) Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. J Appl Microbiol 88:22–30

    Article  Google Scholar 

  • Costerton J, Lewandowski Z, Caldwell D, Korber D, Lappin-Scot H (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Donlan G (2002) Biofilms: microbial life on surfaces. Emerg Infec Dis 8:881–890

    Google Scholar 

  • Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12

    Article  PubMed  CAS  Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67

    Article  PubMed  CAS  Google Scholar 

  • Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  PubMed  CAS  Google Scholar 

  • Kohler T, Curty LK, Barja F, van Delden C, Pechere JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signalling and requires flagella and pili. J Bacteriol 182:5990–5996

    Article  PubMed  CAS  Google Scholar 

  • Lapaglia C, Hartzell PL (1997) Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 63:3158–3163

    PubMed  CAS  Google Scholar 

  • López NI, Floccari ME, Garcia AF, Steinbüchel A, Mendez BS (1995) Effect of poly-3-hydroxybutyrate content on the starvation survival of bacteria in natural waters. FEMS Microbiol Ecol 16:95–101

    Article  Google Scholar 

  • López NI, Pettinari MJ, Stackebrandt E, Tribelli PM, Pötter M, Steinbüchel A, Méndez BS (2009) Pseudomonas extremaustralis sp. nov. A poly(3-hydroxybutyrate) producer isolated from an Antarctic environment. Curr Microbiol 59:514–519

    Article  PubMed  Google Scholar 

  • Lüthi E, Mercenier A, Haas D (1986) The arcABC operon required for fermentative growth of Pseudomonas aeruginosa on arginine: TnS-751-assisted cloning and localization of structural genes. J Gen Microbiol 132:2667–2675

    PubMed  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  PubMed  CAS  Google Scholar 

  • Martinez P, Guzman J, Espin G (1997) A mutation impairing alginate production increased accumulation of poly-β-hydroxybutyrate in Azotobacter vinelandii. Biotech Lett 19:909–912

    Article  CAS  Google Scholar 

  • Matz C, Kjelleberg S (2005) Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13:302–307

    Article  PubMed  CAS  Google Scholar 

  • Ostle A, Holt JG (1982) Nile Blue A as a fluorescent stain for polyhydroxybutyrate. Appl Environ Microbial 44:238–241

    Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  • Pessi G, Haas D (2000) Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J Bacteriol 182:6940–6949

    Article  PubMed  CAS  Google Scholar 

  • Pham TH, Webb JS, Rehm BHA (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413

    Article  PubMed  CAS  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    Article  PubMed  CAS  Google Scholar 

  • Quelas JI, López-García SL, Casabuono A, Althabegoiti MJ, Mongiardini EJ, Pérez-Giménez J, Couto A, Lodeiro AR (2006) Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots. Arch Microbiol 186:119–128

    Article  PubMed  CAS  Google Scholar 

  • Ren Q, de Roo G, Witholt B, Zinn M, Thöny-Meyer L (2010) Influence of growth stage on activities of polyhydroxyalkanoate (PHA) polymerase and PHA depolymerase in Pseudomonas putida U. BMC Microbiol 10:254

    Article  PubMed  Google Scholar 

  • Sauer K, Camper AK, Ehrlich G, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  PubMed  CAS  Google Scholar 

  • Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek M (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264–1277

    Article  PubMed  CAS  Google Scholar 

  • Simpson JA, Smith SE, Dean RT (1989) Scavenging by alginate of free radicals released by macrophages. Free Radical Biol Med 6:347–353

    Article  CAS  Google Scholar 

  • Strocchi M, Ferrer M, Timmis KN, Golyshin PN (2006) Low temperature-induced systems failure in Escherichia coli: insights from rescue by cold-adapted chaperones. Proteomics 6:193–206

    Article  PubMed  CAS  Google Scholar 

  • Trevelyan WE, Harrison JS (1952) Studies on yeast metabolism. Fractionation and microdetermination of cell carbohydrates. Biochem J 50:298–303

    PubMed  CAS  Google Scholar 

  • Tribelli PM, Méndez BS, López NI (2010) Oxygen sensitive global regulator, Anr, is involved in biosynthesis of poly-3-hydroxybutyrate (PHB) in Pseudomonas extremaustralis. J Mol Microbiol Biotech 19:180–188

    Article  CAS  Google Scholar 

  • Van Alst N, Picardo K, Iglewski B, Haidaris C (2007) Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect Immun 75:3780–3790

    Article  PubMed  Google Scholar 

  • Wai S, Mizunoe Y, Takade A, Kawabata SI, Yoshida SI (1998) Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol 64:3648–3655

    PubMed  CAS  Google Scholar 

  • Wang H, Jiang X, Mu H, Liang X, Guan H (2007) Structure and protective effect of exopolysaccharide from P. agglomerans strain KFS-9 against UV radiation. Microbiol Res 162:124–129

    Article  PubMed  CAS  Google Scholar 

  • Xu KD, Stewart PS, Xia F, Huang CT, McFeters GA (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilms is determined by oxygen availability. Appl Environ Microbiol 64:4035–4039

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from UBA and ANPCyT. N.I.L. is a career investigator from CONICET. P.M.T. has a graduate student fellowship from CONICET. We thank Karl G. Rueggeberg for his useful comments and language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy I. López.

Additional information

Communicated by A. Driessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tribelli, P.M., López, N.I. Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions. Extremophiles 15, 541 (2011). https://doi.org/10.1007/s00792-011-0384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00792-011-0384-1

Keywords

Navigation