Skip to main content
Log in

Carboxyl ester hydrolases production and growth of a halophilic archaeon, Halobacterium sp. NRC-1

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The capability of Halobacterium sp. NRC-1 to synthesize carboxyl ester hydrolases was investigated, and the effect of physicochemical conditions on the growth rate and production of esterases was evaluated. The haloarchaeon synthesized a carboxyl ester hydrolase, confirming the genomic prediction. This enzymatic activity was intracellularly produced as a growth-associated metabolite. Esterase activity was assayed using different p-nitrophenyl-esters and triacyl-glycerides, which showed a preference for hydrolyzing tributyrin. The archaeal growth rate and esterase production were significantly influenced by the pH and the NaCl concentration. An interaction effect between temperature and NaCl was also seen. The maximal growth rate and esterase production found for Halobacterium sp. NRC-1 were 0.136 h−1 (at 4.2 M NaCl, pH 6 and 44°C) and 1.64 U/l (at 4.6 M NaCl, pH 6 and 30°C), respectively. Furthermore, the effects of NaCl concentration, pH and temperature on enzyme activity were studied. Two maximal esterase activities were elucidated from the intracellular crude extract when it was incubated at different NaCl concentrations (1 M and 5 M) and at different pHs (6 and 7.5). This is the first report that shows experimentally the synthesis of carboxyl ester hydrolases by Halobacterium sp. NRC-1. This enzyme was found to be extremely halophilic (5 M NaCl) and thermophilic (80°C), making it very interesting for future investigations in non-aqueous biocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beisson F, Tiss A, Riviere C, Verger R (2000) Methods for lipase detection and assay: a critical review. Eur J Lipid Sci Technol 102:133–153

    Article  CAS  Google Scholar 

  • Bhatnagar T, Boutaiba S, Hacene H, Cayol JL, Fardeau ML, Ollivier B, Baratti JC (2005) Lipolytic activity from Halobacteria: screening and hydrolase production. FEMS Microbiol Lett 248:133–140

    Article  CAS  PubMed  Google Scholar 

  • Bornscheuer UT, Kaslauskas RJ (1999) Hydrolases in organic synthesis: regio and stereoselective biotransformations. Wiley, New York

    Google Scholar 

  • Boutaiba S, Bhatnagar T, Hacene H, Mitchell DA, Baratti JC (2006) Preliminary characterization of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. J Mol Catal B Enzym 41:21–26

    Article  CAS  Google Scholar 

  • Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Physiol 117:307–312

    Article  Google Scholar 

  • Demirjian DC, Morís-Varas F, Cassidy SC (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  CAS  PubMed  Google Scholar 

  • Dyall-Smith M (2006) Introduction to halobacteria. In: The halohandbook, protocols for haloarchaeal genetics. University of Melbourne, Australia. http://www.haloarchaea.com/resources/halohandbook/index.html. Accessed 15 Jun 2009

  • Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotech Adv 19:261–278

    Article  CAS  Google Scholar 

  • Ferrer J, PerezPomares F, Bonetem MJ (1996) NADP-glutamate dehydrogenase from the halophilic archaeon Haloferax mediterranei: enzyme purification, N-terminal sequence and stability. FEMS Microbiol Lett 141:59–63

    Article  CAS  PubMed  Google Scholar 

  • Giménez MI, Studdert CA, Sanchez JJ, De Castro RE (2000) Extracellular protease of Natrialba magadii: purification and biochemical characterisation. Extremophiles 4:181–188

    Article  PubMed  Google Scholar 

  • Gutiérrez H, De la Vara R (2004) Optimización de procesos con metodología de superficie de respuesta. In: Análisis y diseño de experimentos. McGraw-Hill, Mexico, pp 472–547

    Google Scholar 

  • Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9:487–495

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  PubMed  Google Scholar 

  • Johnsen U, Schonheit P (2004) Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marismortui. J Bacteriol 186:6198–6207

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Liu SJ, Xue Y, Ma Y, Zhou P (2002) Purification and characterization of an extremely halophilic acetoacetyl-CoA thiolase from a newly isolated Halobacterium strain Zp-6. Extremophiles 6:97–102

    Article  CAS  PubMed  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  PubMed  Google Scholar 

  • Marhuenda-Egea FC, Bonete MJ (2002) Extreme halophilic enzymes in organic solvents. Curr Opin Biotechnol 13:385–389

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Marquez MC, Sanchez-Porro C, Mellado E, Arahal DR, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ (2001) Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterisation. FEMS Microbiol Lett 204:381–385

    Article  CAS  PubMed  Google Scholar 

  • Mimura H, Nagata S (1998) Effect of hyper-salt stress on the heat resistance of a halotolerant Brevibacterium sp. JCM6894. J Ferment Bioeng 85:185–189

    Article  CAS  Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung K, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 97:12176–12181

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer, Secaucus

    Google Scholar 

  • Ozcan B, Ozyilmaz G, Cokmus C, Caliskan M (2009) Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Ind Microbiol Biotechnol 36:105–110

    Article  CAS  PubMed  Google Scholar 

  • Robinson JL, Piscina B, Atrasz RG, Henderson CA, Morrill KL, Burd AM, DeSoucy E, Fogleman RE, Naylor JB, Steele SM, Elliott DR, Leyva KJ, Shand RF (2005) Growth kinetics of extremely halophilic archaea (Family Halobacteriaceae) as Revealed by Arrhenius Plots. J Bacteriol 187:923–929

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Porro C, Martin S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300

    Article  CAS  PubMed  Google Scholar 

  • Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37:1608–1633

    Article  Google Scholar 

  • Sellek GA, Chaudhuri JB (1999) Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb Technol 25:471–482

    Article  CAS  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization and applications of lipases. Biotech Adv 19:627–662

    Article  CAS  Google Scholar 

  • Studdert CA, Herrera-Seitz MK, Plasencia-Gil MI, Sanchez JJ, De Castro RE (2001) Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J Basic Microbiol 41:375–383

    Article  CAS  PubMed  Google Scholar 

  • Tehei M, Franzetti B, Maurel MC, Vergne J, Hountondji C, Zaccai G (2002) The search for traces of life: the protective effect of salt on biological macromolecules. Extremophiles 6:427–430

    Article  CAS  PubMed  Google Scholar 

  • Van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  PubMed  Google Scholar 

  • Verger R (1997) Interfacial activation of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT (J1-61207). Rosa Maria Camacho acknowledges the PhD grant received from CONACYT. The assistance of Dr. Dana E. Erickson, of Peace Corps México, is acknowledged for revising the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Córdova.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho, R.M., Mateos-Díaz, J.C., Diaz-Montaño, D.M. et al. Carboxyl ester hydrolases production and growth of a halophilic archaeon, Halobacterium sp. NRC-1. Extremophiles 14, 99–106 (2010). https://doi.org/10.1007/s00792-009-0291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0291-x

Keywords

Navigation