Skip to main content
Log in

Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are highly reduced bacterial storage compounds that increase fitness in changing environments. We have previously shown that phaRBAC genes from the Antarctic bacterium Pseudomonas sp. 14-3 are located in a genomic island containing other genes probably related with its adaptability to cold environments. In this paper, Pseudomonas sp. 14-3 and its PHA synthase-minus mutant (phaC) were used to asses the effect of PHA accumulation on the adaptability to cold conditions. The phaC mutant was unable to grow at 10°C and was more susceptible to freezing than its parent strain. PHA was necessary for the development of the oxidative stress response induced by cold treatment. Addition of reduced compounds cystine and gluthathione suppressed the cold sensitive phenotype of the phaC mutant. Cold shock produced very rapid degradation of PHA in the wild type strain. The NADH/NAD ratio and NADPH content, estimated by diamide sensitivity, decreased strongly in the mutant after cold shock while only minor changes were observed in the wild type. Accordingly, the level of lipid peroxidation in the mutant strain was 25-fold higher after temperature downshift. We propose that PHA metabolism modulates the availability of reducing equivalents, contributing to alleviate the oxidative stress produced by low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayub ND, Pettinari MJ, Ruiz JA, López NI (2004) A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance. Curr Microbiol 49:170–174

    Article  PubMed  CAS  Google Scholar 

  • Ayub ND, Pettinari MJ, Méndez BS, López NI (2006) Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14-3 is due to a defective β-ketothiolase gene. FEMS Microbiol Lett 264:125–131

    Article  PubMed  CAS  Google Scholar 

  • Ayub ND, Pettinari MJ, Méndez BS, López NI (2007) The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid 58:240–248

    Article  PubMed  CAS  Google Scholar 

  • Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid gas chromatographic method for the determination of poly-ß-hydroxybutyric acid in microbial biomass. Eur J Appl Microbial Biotechnol 6:29–37

    Article  CAS  Google Scholar 

  • Butler MJ, Bruheim P, Jovetic S, Marinelli F, Postma PW, Bibb MJ (2002) Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Environ Microbiol 68:4731–4739

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  CAS  Google Scholar 

  • Franklin FCH, Bagdasarian M, Bagdasarian MM, Timmis KN (1981) Molecular and functional analysis of the TOL plasmid pWW0 from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta-cleavage pathway. Proc Natl Acad Sci USA 78:7458–7462

    Article  PubMed  CAS  Google Scholar 

  • Gocheva YG, Krumova ET, Slokoska LS, Miteva JG, Vassilev SV, Angelova MB (2006) Cell response of Antarctic and temperate strains of Penicillium spp. to different growth temperature. Mycol Res 110:1347–1354

    Article  PubMed  CAS  Google Scholar 

  • Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R, Schumann P, Stackebrandt E, Anderson R (2004) Deinococcus frigens sp. nov., Deinococcus saxicola sp.nov., and Deinococcus marmoris sp.nov., low temperature and draught tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645

    Article  PubMed  CAS  Google Scholar 

  • Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198

    PubMed  CAS  Google Scholar 

  • Huisman GW, Wonink E, de Koning G, Preusting H, Witholt B (1992) Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Appl Microbiol Biotechnol 38:1–5

    Article  CAS  Google Scholar 

  • Kadouri D, Jurkevitch D, Okon Y (2003) Poly β-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant. Arch Microbiol 180:309–318

    Article  PubMed  CAS  Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67

    Article  PubMed  CAS  Google Scholar 

  • Kane DO, Gill V, Boyd P, Burdon R (1996) Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta 198:371–377

    Article  Google Scholar 

  • Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremelly barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11, 000 meters. Appl Environ Microbiol 64:1510–1513

    PubMed  CAS  Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in Prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742

    Article  PubMed  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG (1999) Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2:519–523

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Lee SY, Park BC (2005) Cell surface display of lipase in Pseudomonas putida KT2442 using OprF as an anchoring motif and its biocatalytic applications. Appl Environ Microbiol 71:8581–8586

    Article  PubMed  CAS  Google Scholar 

  • Leonardo MR, Dailly Y, Clark DP (1996) Role of NAD in regulating the adhE gene of Escherichia coli. J Bacteriol 178:6013–6018

    PubMed  CAS  Google Scholar 

  • Liu S, Graham JE, Bigelow L, Morse PD, Wilkinson BJ (2002) Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol 68:1697–1705

    Article  PubMed  CAS  Google Scholar 

  • López NI, Floccari ME, Garcia AF, Steinbüchel A, Mendez BS (1995) Effect of poly-3-hydroxybutyrate content on the starvation survival of bacteria in natural waters. FEMS Microbiol Ecol 16:95–101

    Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    PubMed  CAS  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 94:77–99

    Article  PubMed  CAS  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  PubMed  CAS  Google Scholar 

  • Ostle A, Holt JG (1982) Nile Blue A as a fluorescent stain for poly-hydroxybutyrate. Appl Environ Microbiol 44:238–241

    PubMed  CAS  Google Scholar 

  • Pham TH, Webb JS, Rehm BHA (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413

    Article  PubMed  CAS  Google Scholar 

  • Reva ON, Weinel C, Weinel M, Böhm K, Stjepandic D, Hoheisel JD, Tümmler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188:4079–4092

    Article  PubMed  CAS  Google Scholar 

  • Ruiz JA, López NI, Fernández RO, Méndez BS (2001) Polyhydroxyalkanoate degradation is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural waters microcosms. Appl Environ Microbiol 67:225–230

    Article  PubMed  CAS  Google Scholar 

  • Ruiz JA, López NI, Méndez BS (2004) rpoS gene expression in carbon starved cultures of the polyhydroxyalkanoate accumulating species Pseudomonas oleovorans. Curr Microbiol 48:396–400

    Article  PubMed  CAS  Google Scholar 

  • Salahudeen AK, Huang H, Patel P, Jenkins JK (2000) Mechanism and prevention of cold storage-induced human renal tubular cell injury. Transplantation 70:1424–1431

    Article  PubMed  CAS  Google Scholar 

  • Semchyshyn H, Bagnyukova T, Storey K, Lushchak V (2005) Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol Int 29:898–902

    Article  PubMed  CAS  Google Scholar 

  • Smirnova GV, Zakirova ON, Oktyabrskii ON (2001) The role of antioxidant systems in the cold stress response of Escherichia coli. Microbiology 70:45–50

    Article  CAS  Google Scholar 

  • Yan YB, Wu Q, Zhang RQ (2000) Dynamic accumulation and degradation of poly(3-hydroxyalkanoates) in living cells of Azotobacter vinelandii UWD characterized by 13C NMR. FEMS Microbiol Lett 193:269–273

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Onda K, Imai R, Fukuda R, Horiuchi H, Ohtaa A (2003) Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae. Biochem Biophys Res Commun 307:308–314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Beatriz Méndez and Dr. M. Julia Pettinari for their helpful comments and critical reading of the manuscript. We also are grateful to Dr. María del Carmen Ríos for her advice with the measurements of lipid peroxidation, and two anonymous reviewers who provided useful criticisms. This work was supported by grants from UBA and CONICET. N.I.L. is a career investigator from CONICET. N.D.A and P.M.T. have a graduate student fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy I. López.

Additional information

Communicated by L. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayub, N.D., Tribelli, P.M. & López, N.I. Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13, 59–66 (2009). https://doi.org/10.1007/s00792-008-0197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0197-z

Keywords

Navigation