Skip to main content
Log in

Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natroun, Egypt

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A morphologically distinct heliobacterium, strain HH, was isolated from Lake El Hamra, a soda lake in the Wadi El Natroun region of northwest Egypt. Strain HH consisted of ring-shaped cells that remained attached after cell division to yield coils of various lengths. Strain HH showed several of the physiological properties of known heliobacteria and grouped in the Heliorestis clade by virtue of its phylogeny and alkaliphily. The closest relative of strain HH was the filamentous alkaliphilic heliobacterium Heliorestis daurensis. However, genomic DNA:DNA hybridization results clearly indicated that strain HH was a distinct species of Heliorestis. Based on its unique phenotypic and genetic properties we describe strain HH here as a new species of the genus Heliorestis, H. convoluta sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amesz J (1995) The antenna-reaction center complex of heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 687–697

    Google Scholar 

  • Brockmann H, Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136:17–19

    Article  CAS  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EL, Achenbach LA, Madigan MT (1999) Heliorestis daurensis, gen. nov. sp. nov., an alkaliphilic rod-to-coiled-shaped phototrophic heliobacterium from a Siberian soda lake. Arch Microbiol 172:167–174

    Article  PubMed  CAS  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI, Tourova TP, Kuznetsov BB, Osipov GA (2000) Alkaliphilic heliobacterium Heliorestis baculata sp. nov., and emended description of the genus Heliorestis. Arch Microbiol 174:283–291

    Article  PubMed  CAS  Google Scholar 

  • Gest H, Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136:11–16

    Article  CAS  Google Scholar 

  • Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176:243–254

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF, Hashwa F, Trüper HG (1978) Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch Hydrobiol 84:381–388

    Google Scholar 

  • Imhoff JF, Sahl HG, Soliman GSH, Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1:219–234

    Article  CAS  Google Scholar 

  • Imhoff JF, Trüper HG (1989) Purple nonsulfur bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Vol 3. Williams and Wilkins, Baltimore, pp 1658–1682

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  PubMed  CAS  Google Scholar 

  • Jung DO, Achenbach LA, Karr EA, Takaichi S, Madigan MT (2004) A gas vesiculate planktonic strain of the purple nonsulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol 182:236–243

    Article  PubMed  CAS  Google Scholar 

  • Kimble LK, Madigan MT (1992) N2 fixation and nitrogen metabolism in heliobacteria. Arch Microbiol 158:155–161

    Article  CAS  Google Scholar 

  • Kimble LK, Madigan MT (2001) Molecular evidence that the capacity for endosporulation is universal among phototrophic heliobacteria. FEMS Microbiol Lett 199:191–195

    Article  PubMed  Google Scholar 

  • Kimble LK, Mandelco L, Woese CR, Madigan MT (1995). Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267

    CAS  Google Scholar 

  • Kimble LK, Stevenson AK, Madigan MT (1994). Chemotrophic growth of heliobacteria in darkness. FEMS Microbiol Lett 115:51–56

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, van de Meent EJ, Erkelens C, Amesz J, Ikegami I, Watanabe T (1991) Bacteriochlorophyll g epimer as a possible reaction center component of heliobacteria. Biochim Biophys Acta 1057:89–96

    Article  CAS  Google Scholar 

  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 39–111

    Google Scholar 

  • Madigan MT (1992). The Heliobacteriaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes: a handbook on the biology of bacteria ecophysiology, isolation, identification, applications. Springer, Berlin Heidelberg New York, pp 1981–1992

    Google Scholar 

  • Madigan MT (2001) Heliobacteriaceae. In: Boone D, Castenholz RW, Garrity GM (eds), Bergey’s manual of systematic bacteriology, 2nd edn,Vol. 1, Springer, Berlin Heidelberg New York, pp. 625–630

  • Madigan MT, Ormerod JG (1995). Taxonomy, physiology, and ecology of heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 17–30

    Google Scholar 

  • Milford AD, Jung DO, Achenbach LA, Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol. 174:18–27

    Article  PubMed  CAS  Google Scholar 

  • Miller KR, Jacob JS, Smith U, Kdaczkowski S, Bowman MK (1986) Heliobacterium chlorum: cell organization and structure. Arch Microbiol 146:111–114

    Article  PubMed  CAS  Google Scholar 

  • Oremland RS, Miller LG (1993) Biogeochemistry of natural gases in three alkaline permanently stratified meromictic lakes. In: The future of energy gases, USGS Paper 1570:439–452

  • Ormerod JG, Kimble LK, Nesbakken T, Torgersen TA, Woese CR, Madigan MT (1996) Heliophilum fasciatum gen. nov. et sp. nov., and Heliobacterium gestii sp. nov. endospore-forming heliobacteria from rice field soils. Arch Microbiol 165:226–234

    Article  PubMed  CAS  Google Scholar 

  • Ormerod J, Nesbakken T, Torgersen Y (1990) Phototrophic bacteria that form heat resistant endospores. In: Baltscheffsky M (ed) Current research in photosynthesis, Vol 4. Kluwer, Dordrecht, pp 935–938

  • Pfennig N, Wagener S (1986) An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Meth 4:303–306

    Article  Google Scholar 

  • Pickett MW, Williamson MP, Kelly DJ (1994) An enzyme and 13C-NMR study of carbon metabolism in heliobacteria. Photosynth Res 41:75–88

    Article  CAS  Google Scholar 

  • Starynin DA, Gorlenko VM (1993) Sulphide-oxidizing spore-forming heliobacteria isolated from a thermal sulphide spring. Microbiology 62:343–347

    Google Scholar 

  • Stevenson AK, Kimble LK, Woese CR, Madigan MT (1997) Characterization of new heliobacteria and their habitats. Photosynth Res 53:1–12

    Article  CAS  Google Scholar 

  • Swofford DL (1998) PAUP* phylogenetic analysis using parsimony, version 4.0 Smithsonian Institution, Washington, DC

  • Takaichi S, Inoue K, Akaike M, Kobayashi M, Oh-oka H, Madigan MT (1997) The major carotenoid in all species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Arch Microbiol 168:277–281

    Article  PubMed  CAS  Google Scholar 

  • Takaichi S, Oh-oka H, Maoka T, Jung DO, Madigan MT (2003) Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 179:95–100

    PubMed  CAS  Google Scholar 

  • Wahlund TM, Castenholz RW, Woese CR, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum, nov. sp. Arch Microbiol 156:81–91

    Article  CAS  Google Scholar 

  • Woese CR, Debrunner-Vossbrinck BA, Oyaizu H, Stackebrandt E, Ludwig W (1985) Gram-positive bacteria: possible photosynthetic ancestry. Science 229:762–765

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Science Foundation grant MCB 0237576. We thank Prof. Aharon Oren, Hebrew University Jerusalem, for nomenclatural advice. We also thank Profs. Ahmed Shoreit (Assiut University, Egypt) and M.S.A. Shabeb (Aswan University, Egypt) for funding the field trip and escorting MTM into the field. We also thank an anonymous Bedouin farmer whose land lay adjacent to Lake El Hamra for help in gaining access to and sampling this habitat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Madigan.

Additional information

Communicated by K. Horikoshi

Dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asao, M., Jung, D.O., Achenbach, L.A. et al. Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natroun, Egypt. Extremophiles 10, 403–410 (2006). https://doi.org/10.1007/s00792-006-0513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0513-4

Keywords

Navigation