Skip to main content
Log in

Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 (PhCPN) and its functional cooperation with the cognate prefoldin were investigated. PhCPN existed as a homo-oligomer in a double-ring structure, which protected the citrate synthase of a porcine heart from thermal aggregation at 45°C, and did the same on the isopropylmalate dehydrogenase (IPMDH) of a thermophilic bacterium, Thermus thermophilus HB8, at 90°C. PhCPN also enhanced the refolding of green fluorescent protein (GFP), which had been unfolded by low pH, in an ATP-dependent manner. Unexpectedly, functional cooperation between PhCPN and Pyrococcus prefoldin (PhPFD) in the refolding of GFP was not observed. Instead, cooperation between PhCPN and PhPFD was observed in the refolding of IPMDH unfolded with guanidine hydrochloride. Although PhCPN alone was not effective in the refolding of IPMDH, the refolding efficiency was enhanced by the cooperation of PhCPN with PhPFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Archibald JM, Logsdon JM, Doolittle WF (1999) Recurrent paralogy in the evolution of archaeal chaperonins. Curr Biol 9:1053–1056

    Article  CAS  PubMed  Google Scholar 

  • Baykov AA, Kasho VN, Avaeva SM (1988) Inorganic pyrophosphatase as a label in heterogeneous enzyme immunoassay. Anal Biochem 171:271–276

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Deuerling E, Pfund C and Craig EA (2000) Getting newly synthesized proteins into shape. Cell 101:19–122

    Article  Google Scholar 

  • Ditzel L, Lowe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125–138

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Hartl FU (1996) Protein folding in the cell: competing models of chaperonin function. FASEB J 10:20–26

    CAS  PubMed  Google Scholar 

  • Ellis, RJ (1996) The chaperonins. Academic, San Diego

    Google Scholar 

  • Fenton WA, Horwich AL (1997) GroEL-mediated protein folding. Protein Sci 6:743–760

    CAS  PubMed  Google Scholar 

  • Furutani M, Iida T, Yoshida T, Maruyama T (1998) Group II chaperonin in a thermophilic methanogen, Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J Biol Chem 273:28399–28407

    Article  CAS  PubMed  Google Scholar 

  • Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17:952–966

    Article  CAS  PubMed  Google Scholar 

  • Geladopoulos TP, Sotiroudis TG, Evangelopoulos AE (1991) A malachite green colorimetric assay for protein phosphatase activity. Anal Biochem 192:112–116

    CAS  PubMed  Google Scholar 

  • Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  CAS  PubMed  Google Scholar 

  • Gribaldo S, Lumia V, Creti R, de Macario EC, Sanangelantoni A, Cammarano P (1999) Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J Bacteriol 181:434–443

    CAS  PubMed  Google Scholar 

  • Guagliardi A, Cerchia L, Bartolucci S, Rossi M (1994) The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci 3:1436–1443

    CAS  PubMed  Google Scholar 

  • Guagliardi A, Cerchia L, Rossi M (1995) Prevention of in vitro protein thermal aggregation by the Sulfolobus solfataricus chaperonin. Evidence for nonequivalent binding surfaces on the chaperonin molecule. J Biol Chem 270:28126–28132

    Article  CAS  PubMed  Google Scholar 

  • Gutsche I, Essen LO, Baumeister W (1999) Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J Mol Biol 293:295–312

    Article  CAS  PubMed  Google Scholar 

  • Hansen WJ, Cowan NJ, Welch WJ (1999) Prefoldin-nascent chain complexes in the folding of cytoskeletal proteins. J Cell Biol 145:265–277

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Horwich AL, Saibil HR (1998) The thermosome: chaperonin with a built-in lid. Nat Struct Biol 5:333–336

    Article  CAS  PubMed  Google Scholar 

  • Iizuka R, Yoshida T, Maruyama T, Shimura Y, Miki K, Yohda M (2001) Glycine at the 65th position plays an essential role in ATP dependent protein folding by archaeal group II chaperonin. Biochem Biophys Res Commun 289:1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Imada K, Sato M, Tanaka N, Katsube Y, Matsuura Y, Oshima T (1991) Three-dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution. J Mol Biol 222:725–738

    CAS  PubMed  Google Scholar 

  • Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S, Kosugi H, Hosoyama A et al. (1998a) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5:55–76

    CAS  PubMed  Google Scholar 

  • Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S, Kosugi H, Hosoyama A et al. (1998b) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3 (supplement). DNA Res 5:147–155

    CAS  PubMed  Google Scholar 

  • Kim S, Willison KR, Horwich AL (1994) Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem Sci 19:543–548

    Article  CAS  PubMed  Google Scholar 

  • Klumpp M, Baumeister W (1998) The thermosome: archetype of group II chaperonins. FEBS Lett 430:73–77

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Hynes G, Willison K (1995) The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur J Biochem 230:3–16

    CAS  Google Scholar 

  • Kusmierczyk AR, Martin J (2003) Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis. Biochem J 371:669–673

    Article  CAS  PubMed  Google Scholar 

  • Laksanalamai P, Whitehead TA, Robb FT (2004) Minimal protein-folding systems in hyperthermophilic archaea. Nature Rev Microbiol 2:315–324

    Article  CAS  Google Scholar 

  • Leroux MR, Fandrich M, Klunker D, Siegers K, Lupas AN, Brown JR, Schiebel E, Dobson CM, Hartl FU (1999) MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J 18:6730–6743

    Article  CAS  PubMed  Google Scholar 

  • Martin-Benito J, Boskovic J, Gomez-Puertas P, Carrascosa JL, Simons CT, Lewis SA, Bartolini F, Cowan NJ, Valpuesta JM (2002) Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J 21:6377–6386

    Article  CAS  PubMed  Google Scholar 

  • Mogk A, Bukau B, Deuerling E (2001) Cellular functions of cytosolic E. coli chaperones. In: Lund P (ed) Molecular chaperones in the cell. Oxford University Press, Oxford, pp 1–34

    Google Scholar 

  • Okochi M, Yoshida T, Maruyama T, Kawarabayasi Y, Kikuchi H, Yohda M (2002) Pyrococcus prefoldin stabilizes protein-folding intermediates and transfers them to chaperonins for correct folding. Biochem Biophys Res Commun 291:769–774

    Article  CAS  PubMed  Google Scholar 

  • Okochi M, Nomura T, Zako T, Arakawa T, Iizuka R, Ueda H, Funatsu T, Leroux M, Yohda M (2004) Kinetics and binding sites for interaction of the prefoldin with a group II chaperonin: contiguous non-native substrate and chaperonin binding sites in the archaeal prefoldin. J Biol Chem 279:31788–31795

    Article  CAS  PubMed  Google Scholar 

  • Ranson NA, White HE, Saibil HR (1998) Chaperonins. Biochem J 333 (Pt 2):233–242

    CAS  PubMed  Google Scholar 

  • Shomura Y, Yoshida T, Iizuka R, Maruyama T, Yohda M, Miki K (2004) Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J Mol Biol 335:1265–1278

    Article  CAS  PubMed  Google Scholar 

  • Siegert R, Leroux MR, Scheufler C, Hartl FU, Moarefi I (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621–632

    Article  CAS  PubMed  Google Scholar 

  • Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL (1998) Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67:581–608

    Article  CAS  PubMed  Google Scholar 

  • Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873

    Article  CAS  PubMed  Google Scholar 

  • Valpuesta JM, Martin-Benito J, Gomez-Puertas P, Carrascosa JL, Willison KR (2002) Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett 529:11–16

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Yohda M, Iida T, Maruyama T, Taguchi H, Yazaki K, Ohta T, Odaka M, Endo I, Kagawa Y (1997) Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J Mol Biol 273:635–645

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Yohda M, Iida T, Maruyama T, Taguchi H, Yazaki K, Ohta T, Odaka M, Endo I, Kagawa Y (2000) [Corrigendum] Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J Mol Biol 299:1399–1400

    Article  CAS  Google Scholar 

  • Yoshida T, Ideno A, Hiyamuta S, Yohda M, Maruyama T (2001) Natural chaperonin of the hyperthermophilic archaeum, Thermococcus strain KS-1: a hetero-oligomeric chaperonin with variable subunit composition. Mol Microbiol 39:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Ideno A, Suzuki R, Yohda M, Maruyama T (2002) Two kinds of archaeal group II chaperonin subunits with different thermostability in Thermococcus strain KS-1. Mol Microbiol 44:761–769

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Kawaguchi R, Taguchi H, Yoshida M, Yasunaga T, Wakabayashi T, Yohda M, Maruyama T (2002) Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J Mol Biol 315:73–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work reported here is a part of the 21st Century COE (Center of Excellence) program of “Future Nano-Materials” research and education project, which is financially supported by the Ministry of Education, Science, Sports, Culture, and Technology through Tokyo University of Agriculture and Technology. This work was also supported by grants-in-aid for scientific research on priority areas (13033008 14037216, and 15032212), and a grant of the National Project on Protein Structural and Functional Analyses from the Ministry of Education, Science, Sports and Culture of Japan to M.Y. We appreciate Dr. Kawarabayasi for giving a shotgun clone of P. horikoshii OT3 containing a chaperonin ORF, PH0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Yohda.

Additional information

Communicated by F. Robb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okochi, M., Matsuzaki, H., Nomura, T. et al. Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 9, 127–134 (2005). https://doi.org/10.1007/s00792-004-0427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0427-y

Keywords

Navigation