Skip to main content
Log in

Isolation of a complete A1AO ATP synthase comprising nine subunits from the hyperthermophile Methanococcus jannaschii

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Archaeal A1AO ATP synthase/ATPase operons are highly conserved among species and comprise at least nine genes encoding structural proteins. However, all A1AO ATPase preparations reported to date contained only three to six subunits and, therefore, the study of this unique class of secondary energy converters is still in its infancy. To improve the quality of A1AO ATPase preparations, we chose the hyperthermophilic, methanogenic archaeon Methanococcus jannaschii as a model organism. Individual subunits of the A1AO ATPase from M. jannaschii were produced in E. coli, purified, and antibodies were raised. The antibodies enabled the development of a protocol ensuring purification of the entire nine-subunit A1AO ATPase. The ATPase was solubilized from membranes of M. jannaschii by Triton X-100 and purified to apparent homogeneity by sucrose density gradient centrifugation, ion exchange chromatography, and gel filtration. Electron micrographs revealed the A1 and AO domains and the central stalk, but also additional masses which could represent a second stalk. Inhibitor studies were used to demonstrate that the A1 and AO domains are functionally coupled. This is the first description of an A1AO ATPase preparation in which the two domains (A1 and AO) are fully conserved and functionally coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    CAS  PubMed  Google Scholar 

  • Aris JP, Klionsky DJ, Simoni RD (1985) The FO subunits of the Escherichia coli F1FO-ATP synthase are sufficient to form a functional proton pore. J Biol Chem 260:11207–11215

    CAS  PubMed  Google Scholar 

  • Becher B, Müller V (1994) \( \Delta \tilde \mu _{{\rm{Na}}} \)drives the synthesis of ATP via an \( \Delta \tilde \mu _{{\rm{Na}}^{\rm{ + }} } \)translocating F1FO-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1. J Bacteriol 176:2543–2550

    PubMed  Google Scholar 

  • Boekema EJ, Ubbink-Kok T, Lolkema JS, Brisson A, Konings WN (1997) Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential for rotational catalysis. Proc Natl Acad Sci USA 94:14291–14293

    Article  CAS  PubMed  Google Scholar 

  • Böttcher B, Gräber P (2000) The structure of the H+-ATP synthase from chloroplasts and its subcomplexes as revealed by electron microscopy. Biochim Biophys Acta 1458:404–416

    PubMed  Google Scholar 

  • Chen W, Konisky J (1993) Characterization of a membrane-associated ATPase from Methanococcus voltae, a methanogenic member of the Archaea. J Bacteriol 175:5677–5682

    CAS  PubMed  Google Scholar 

  • Chien LF, Wu JJ, Tzeng CM, Pan RL (1993) ATPase of Rhodospirillum rubrum requires three functional copies of β-subunit as determined by radiation inactivation analysis. Biochem Mol Biol Int 31:13–18

    CAS  PubMed  Google Scholar 

  • Coskun Ü, Grüber G, Koch MH, Godovac-Zimmermann J, Lemker T, Müller V (2002) Crosstalk in the A1-ATPase from Methanosarcina mazei Gö1 due to nucleotide-binding. J Biol Chem 277:17327–17333

    Article  CAS  PubMed  Google Scholar 

  • Deppenmeier U, Müller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165:149–163

    Article  CAS  Google Scholar 

  • Dimroth P (1997) Primary sodium ion translocating enzymes. Biochim Biophys Acta 1318:11–51

    Article  CAS  PubMed  Google Scholar 

  • Fillingame RH (2000) Getting to the bottom of the F1-ATPase. Nat Struct Biol 7:1002–1004

    Article  CAS  PubMed  Google Scholar 

  • Fillingame RH, Jiang W, Dmitriev OY (2000) Coupling H+ transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor. J Exp Biol 203:9–17

    CAS  PubMed  Google Scholar 

  • Forgac M (1999) Structure and properties of the vacuolar H+-ATPases. J Biol Chem 274:12951–12954

    Article  CAS  PubMed  Google Scholar 

  • Forgac M (2000) Structure, mechanism and regulation of the clathrin-coated vesicle and yeast vacuolar H+-ATPases. J Exp Biol 203:71–80

    CAS  PubMed  Google Scholar 

  • Futai M, Omote H, Maeda M (1995) Escherichia coli H+-ATPase (ATP synthase): catalytic site and roles of subunit interactions in energy coupling. Biochem Soc Trans 23:785–789

    CAS  PubMed  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of Methanosarcina acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  CAS  PubMed  Google Scholar 

  • Gallagher S, Winston SE, Fuller SA, Hurrell JGR (1993). Analysis of proteins In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Gogarten JP, Taiz L (1992) Evolution of proton pumping ATPases: rooting the tree of life. Photosynth Res 33:137–146

    CAS  Google Scholar 

  • Grüber G, Svergun DI, Coskun Ü, Lemker T, Koch MH, Schägger H, Müller V (2001a) Structural insights into the A1 ATPase from the archaeon, Methanosarcina mazei Gö1. Biochemistry 40:1890–1896

    Article  PubMed  Google Scholar 

  • Grüber G, Wieczorek H, Harvey WR, Müller V (2001b) Structure–function relationships of A-, F- and V-ATPases. J Exp Biol 204:2597–2605

    PubMed  Google Scholar 

  • Heinonen JE, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    CAS  PubMed  Google Scholar 

  • Hochstein LI, Kristjansson H, Altekar W (1987) The purification and subunit structure of a membrane-bound ATPase from the Archaebacterium Halobacterium saccharovorum. Biochem Biophys Res Commun 147:295–300

    CAS  PubMed  Google Scholar 

  • Ihara K, Watanabe S, Sugimura K, Mukohata Y (1997) Identification of proteolipid from an extremely halophilic archaeon Halobacterium salinarum as an N′,N′-dicyclohexyl-carbodiimide binding subunit of ATP synthase. Arch Biochem Biophys 341:267–272

    Article  CAS  PubMed  Google Scholar 

  • Inatomi KI (1986) Characterization and purification of the membrane-bound ATPase of the archaebacterium Methanosarcina barkeri. J Bacteriol 167:837–841

    CAS  PubMed  Google Scholar 

  • Inatomi KI, Kamagata Y, Nakamura K (1993) Membrane ATPase from the aceticlastic methanogen Methanothrix thermophila. J Bacteriol 175:80–84

    CAS  PubMed  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    CAS  Google Scholar 

  • Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H+-ATPase in vivo. J Biol Chem 270:17025–17032

    CAS  PubMed  Google Scholar 

  • Laubinger W, Dimroth P (1988) Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. Biochemistry 27:7531–7537

    CAS  PubMed  Google Scholar 

  • Lemker T, Ruppert C, Stöger H, Wimmers S, Müller V (2001) Overproduction of a functional A1 ATPase from the archaeon Methanosarcina mazei Gö1 in Escherichia coli. Eur J Biochem 268:3744–3750

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lübben M, Schäfer G (1989) Chemiosmotic energy conservation of the thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an FO-related N′,N′-dicyclohexylcarbodiimide-binding proteolipid. J Bacteriol 171:6106–6116

    PubMed  Google Scholar 

  • Lübben M, Lünsdorf H, Schäfer G (1987) A plasma membrane ATPase of the thermophilic archaebacterium Sulfolobus acidocaldarius: purification and immunological relationships to F1-ATPases. Eur J Biochem 167:211–219

    PubMed  Google Scholar 

  • Menz RI, Walker JE, Leslie AG (2001) Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106:331–341

    CAS  PubMed  Google Scholar 

  • Michel H, Oesterhelt D (1980) Electrochemical proton gradient across the cell membrane of Halobacterium halobium: comparison of the light-induced increase with the increase of intracellular adenosine triphosphate under steady-state illumination. Biochemistry 19:4615–4619

    CAS  PubMed  Google Scholar 

  • Mountfort DO (1978) Evidence for ATP synthesis driven by a proton gradient in Methanosarcina barkeri. Biochem Biophys Res Commun 85:1346–1350

    CAS  PubMed  Google Scholar 

  • Mukohata Y, Ihara K (1990). Situation of archaebacterial ATPase among ion-translocating ATPase In: Kim CH, Ozawa T (eds) Bioenergetics. Plenum, New York, pp 205–216

    Google Scholar 

  • Müller V, Ruppert C, Lemker T (1999) Structure and function of the A1AO ATPases from methanogenic archaea. J Bioenerg Biomembrane 31:15–28

    Article  PubMed  Google Scholar 

  • Müller V, Aufurth S, Rahlfs S (2001) The Na+ cycle in Acetobacterium woodii: identification and characterization of a Na+ translocating F1FO-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. Biochim Biophys Acta 1505:108–120

    PubMed  Google Scholar 

  • Neumann S, Matthey U, Kaim G, Dimroth P (1998) Purification and properties of the F1FO ATPase of Ilyobacter tartaricus, a sodium ion pump. J Bacteriol 180:3312–3316

    CAS  PubMed  Google Scholar 

  • Reidlinger J, Müller V (1994) Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1FO-type enzyme. Eur J Biochem 223:275–283

    CAS  PubMed  Google Scholar 

  • Ruppert C, Wimmers S, Lemker T, Müller V (1998) The A1AO ATPase from Methanosarcina mazei: cloning of the 5′ end of the aha operon encoding the membrane domain and expression of the proteolipid in a membrane-bound form in Escherichia coli. J Bacteriol 180:3448–3452

    CAS  PubMed  Google Scholar 

  • Ruppert C, Kavermann H, Wimmers S, Schmid R, Kellermann J, Lottspeich F, Huber H, Stetter KO, Müller V (1999) The proteolipid of the A1AO ATP synthase from Methanococcus jannaschii has six predicted transmembrane helices but only two proton-translocating carboxyl groups. J Biol Chem 274:25281–25284

    Article  CAS  PubMed  Google Scholar 

  • Ruppert C, Schmid R, Hedderich R, Müller V (2001) Selective extraction of subunit D of the Na+-translocating methyltransferase and subunit c of the A1AO ATPase from the cytoplasmic membrane of methanogenic archaea by chloroform/methanol and characterization of subunit c of Methanothermobacter thermoautotrophicus as a 16-kDa proteolipid. FEMS Microbiol Lett 195:47–51

    Article  CAS  PubMed  Google Scholar 

  • Schäfer G, Meyering-Vos M (1992) F-Type or V-Type? The chimeric nature of the archaebacterial ATP synthase. Biochim Biophys Acta 1101:232–235

    PubMed  Google Scholar 

  • Schäfer G, Engelhard M, Müller V (1999) Bioenergetics of the Archaea. Microbiol Mol Biol Rev 63:570–620

    PubMed  Google Scholar 

  • Scheel E, Schäfer G (1990) Chemiosmotic energy conservation and the membrane ATPase of Methanolobus tindarius. Eur J Biochem 187:727–735

    CAS  PubMed  Google Scholar 

  • Senior AE, Nadanaciva S, Weber J (2000) Rate acceleration of ATP hydrolysis by F1FO ATP synthase. J Exp Biol 203:35–40

    CAS  PubMed  Google Scholar 

  • Steinert K, Bickel-Sandkötter S (1996) Isolation, characterization, and substrate specificity of the plasma membrane ATPase of the halophilic archaeon Haloferax volcanii. Z Naturforsch 51:29–39

    CAS  Google Scholar 

  • Steinert K, Wagner V, Kroth-Pancic PG, Bickel-Sandkötter S (1997) Characterization and subunit structure of the ATP synthase of the halophilic archaeon Haloferax volcanii and organization of the ATP synthase genes. J Biol Chem 272:6261–6269

    CAS  PubMed  Google Scholar 

  • Stock D, Gibbons C, Arechaga I, Leslie AG, Walker JE (2000) The rotary mechanism of ATP synthase. Curr Opin Struct Biol 10:672–679

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Valentine RC, Chignell DA (1968) Electron microscopy of muscle phosphorylase molecules: significance of a rhombic shape. Nature 218:950–953

    CAS  PubMed  Google Scholar 

  • Vik SB, Antonio BJ (1994) A mechanism of proton translocation by F1FO ATP synthases suggested by double mutants of the a subunit. J Biol Chem 269:30364–30369

    CAS  PubMed  Google Scholar 

  • Wilkens S, Capaldi RA (1998) Electron microscopic evidence of two stalks linking the F1 and FO parts of the Escherichia coli ATP synthase. Biochim Biophys Acta 1365:93–97

    Article  CAS  PubMed  Google Scholar 

  • Wilms R, Freiberg C, Wegerle E, Meier I, Mayer F, Müller V (1996) Subunit structure and organization of the genes of the A1AO ATPase from the archaeon Methanosarcina mazei Gö1. J Biol Chem 271:18843–18852

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft. We are indebted to Holger Kavermann and Volker Kuhle for their contributions to the expression studies. We thank Thorsten Lemker for his support in protein purification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Müller.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lingl, A., Huber, H., Stetter, K.O. et al. Isolation of a complete A1AO ATP synthase comprising nine subunits from the hyperthermophile Methanococcus jannaschii . Extremophiles 7, 249–257 (2003). https://doi.org/10.1007/s00792-003-0318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-003-0318-7

Keywords

Navigation