Skip to main content
Log in

Adaptive large eddy simulation

  • Published:
Computing and Visualization in Science

Abstract

Several a posteriori indicators in the framework of local grid adaptation and large eddy simulation (LES) are evaluated. In LES indicators must be capable to bound not only the discretisation error, but also the modeling error. Moreover, the numerical method must be able to adapt the computational grid dynamically, as the regions requiring different resolution are not static. The performance of different indicators is evaluated in two flow configurations. It turns out that the classic residual based error indicator and the newly introduced heuristic indicator perform best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley Teubner, UK (1996)

    MATH  Google Scholar 

  2. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Phys. 53, 484–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hoffman, J.: Adaptive finite element methods for LES: computation of the mean drag coefficient in a turbulent flow around a surface mounted cube using adaptive mesh refinement. Chalmers Finite Element Center 22. Preprint

  4. Terracol, M., Sagaut, P., Basdevant, C.: A multilevel/multirésolution approach for large-eddy simulation. In: European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000 (2000)

  5. Gray, D., Giorgino, A.: The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 19, 545–551 (1975)

    Article  Google Scholar 

  6. Ghosal, S., Moin, P.: The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118, 24–37 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Moin, P., Reynolds, W., Ferziger, J.: Large eddy simulation of incompressible turbulent channel flow. Tech. Rep., Dept. of Mech. Eng. Rep. TF12, Stanford University (1978)

  8. Vasilyev, O., Lund, T., Moin, P.: A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146, 82–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schneider, G., Raw, M.: Control volume finite-element method for heat transfer and fluid flux using colocated variables. Numer. Heat Transf. 11, 363–390 (1987)

    MATH  Google Scholar 

  10. Rentz-Reichert, H.: Robuste Mehrgitterverfahren zur Lösung der inkompressiblen Navier–Stokes Gleichung: ein Vergleich. Ph.D. Thesis, IWR, Universität Heidelberg (1996)

  11. Nägele, S.: Mehrgitterverfahren für die inkompressiblen Navier–Stokes Gleichungen im laminaren und turbulenten Regime unter Berücksichtigung verschiedener Stabilisierungsmethoden. Ph.D. Thesis, IWR, Universität Heidelberg (2004)

  12. Bastian, P., Birken, K., Johannsen, K., Lang, S., Eckstein, K., Neuss, N., Rentz-Reichert, H., Wieners, C.: UG—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)

    Article  MATH  Google Scholar 

  13. Glowinski, R., Periaux, J.: Numerical methods for nonlinear problems in fluid dynamics. In: Supercomputing. State-of-the-Art, pp. 381–479 (1987)

  14. Carati, D., Wray, A.: Time filtering in large eddy simulations. Proc. Summer Progr. 2000(91), 99–165 (1963). (Center for Turbulence Research)

    Google Scholar 

  15. Dennis, J., More, J.: Quasi-Newton methods, motivation and theory. SIAM Rev. 19(1), 46–89 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wittum, G.: On the robustness of ILU smoothing. SIAM J. Sci. Stat. Comput. 10(4), 699–717 (1989a)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wittum, G.: Multi-grid methods for Stokes and Navier–Stokes equations. Transforming smoothers–algorithms and numerical results. Numer. Math. 54, 543–563 (1989b)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wittum, G.: The use of fast solvers in computational fluid dynamics. In: Wesseling, P. (ed.) Numerical Methods in Fluid Mechanics. Proceedings of the Annual Conference of the GAMM-Fachausschuss für Strömungsmechanik, Delft (25–27 Sept 1989c)

  19. Reichert, H., Wittum, G.: Robust multi-grid for incompressible flows. Notes Numer. Fluid Mech. 49 (1995)

  20. Bramble, J., Pasciak, J.E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comp. 57, 23–45 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bastian, P., Wittum, G.: Robustness and adaptivity: the UG concept. In: Hemker, P., Wesseling, P. (eds.) Multigrid Methods IV, Proceedings of the Fourth European Multigrid Conference. Birkhäuser, Amsterdam (1994)

    Google Scholar 

  22. Van der Vorst, H.: Bi-CGSTAB: a fast and smoothly converging variant of bicg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 13, 631–644 (1992)

  23. Becker, R.: An adaptive finite element method for the Navier–Stokes equations on time-dependent domains. Ph.D. Thesis, University of Heidelberg (1995)

  24. Bank, R., Smith, K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30, 921–935 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, J., Zienkiewicz, O.: Adaptive techniques in the finite element method. Appl. Numer. Methods 4, 197–204 (1988)

    Article  MATH  Google Scholar 

  26. Frolkovic, P., Knabner, P., Tapp, C., Thiele, K.: D3F-ein Programmpaket zur Modellierung von Dichtestroemungen, gRS-139, Gesellschaft fuer Anlagen- und Reaktorsicherheit (GSR) mbH, Braunschweig (1998)

  27. Bank, R.E., Sherman, A.H., Weiser, A.: Refinement algorithms and data structures for regular mesh refinement. In: Scientific Computing: 10. IMACS World Conference on System Simulation and Scientific Computing (1983)

  28. Bastian, P.: Parallele adaptive Mehrgitterverfahren. Ph.D. Thesis, Universität Heidelberg (1994)

  29. Lang, S., Wittum, G.: Large scale density driven flow simulations using parallel unstructered grid adaptation and local multigrid methods. Concurr. Comput. 17(11), 1415–1440 (1995)

    Article  Google Scholar 

  30. Hauser, A.: Large eddy simulation auf uniform und adaptiv verfeinerten Gittern. Ph.D. Thesis, Universität Heidelberg (2009)

  31. Denev, J., Fröhlich, J., Bockhorn, H.: Benchmark test ‘jet in cross-flow (JICF)’, theoretische Methoden zur Vorhersage von Strömungs- und Konzentrationsfeldern, DFG-SPP 1141 (1999)

  32. Betts, P.L., Bokhari, I.H.: Experiments on turbulent natural convection in an enclosed tall cavity. Int. J. Heat Fluid Flow. 21, 675–683 (2000)

    Article  Google Scholar 

  33. Geurts, B.: Balancing errors in LES. In: Sandham, N., Voke, P., Kleiser, L. (eds.) Direct and Large Eddy Simulation III. Kluwer, Cambridge (1994)

    Google Scholar 

  34. Geurts, B.: Elements of Direct and Large-Eddy Simulation. Edwards, Crawley (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hauser.

Additional information

Communicated by Randolph E. Bank.

Appendix 1: error analysis

Appendix 1: error analysis

In LES one principally distinguishes between the disretisation and the modeling error. The discretisation error is determined by the discretisation scheme and is guided by the discretisation parameter h. The modeling error is caused by the shortcomings of the underlying LES model, which in turn depends on the filterwidth \(\Delta \). Although both error types can be further sub-classified, the two error components mentioned are assumed to be the most prevailing [33]. Suppose the discretisation scheme and LES model are both convergent, the discretisation error ed and modeling error em behave like

$$\begin{aligned} \lim _{h\rightarrow 0}ed=0 \end{aligned}$$

and

$$\begin{aligned} \lim _{\Delta \rightarrow 0}em=0. \end{aligned}$$
(7)

Although (7) might not be valid for special scale similarity models [34], we presume convergent models here. Closely following the approach and notation of Geurts in [34], we denote \(x_{LES}(\Delta ,h)\) as the LES computation with an appropriate grid and filter resolution with a discretisation and modeling error. A computation for substantially smaller h, whereas \(\Delta \) is kept constant, is named a fine LES, which is denoted by \(x_{LES}(\Delta ,0)\), reduces the discretisation error only, while the modeling error remains constant. Subtracting the fine LES solution from the standard LES solution, the discretisation error can be determined by

$$\begin{aligned} ed(x):=x_{LES}\left( \Delta ,h\right) -x_{LES}\left( \Delta ,0\right) , \end{aligned}$$

where x may stand for the velocity or any other reasonable quantity. In order to determine the modeling error, a direct numerical simulation (DNS), which exhibits no modeling error, is filtered explicitly with the filter operator \(G(\Delta )\):

$$\begin{aligned} x_{\overline{DNS}}=x_{DNS}\circ G\left( \Delta \right) . \end{aligned}$$

Subtracting the explicitly filtered DNS from the fine LES, we obtain the modeling error:

$$\begin{aligned} em(x):=x_{LES}\left( \Delta ,0\right) -x_{\overline{DNS}}\left( \Delta \right) . \end{aligned}$$

It should be noted that we do not deal with the real discretisation or modeling error. Rather, we express the influence of both error types on x. However, we assume a correlation between the real errors and this influence expressed by ed(x) and em(x) respectively. As the ratio between the two error types is of interest, we introduce

$$\begin{aligned} q:=ed{/}em. \end{aligned}$$
(8)

As we consider sequences of solutions with different finite grid size and filterwidth resolutions, they all exhibit a discretisation and modeling error to a larger or smaller extent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauser, A., Wittum, G. Adaptive large eddy simulation. Comput. Visual Sci. 17, 295–304 (2015). https://doi.org/10.1007/s00791-016-0265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-016-0265-3

Keywords

Navigation