Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Computing and Visualization in Science
  3. Article

Parallel black box \(\mathcal {H}\)-LU preconditioning for elliptic boundary value problems

  • Regular article
  • Open Access
  • Published: 01 April 2008
  • volume 11, pages 273–291 (2008)
Download PDF

You have full access to this open access article

Computing and Visualization in Science
Parallel black box \(\mathcal {H}\)-LU preconditioning for elliptic boundary value problems
Download PDF
  • Lars Grasedyck1,
  • Ronald Kriemann1 &
  • Sabine Le Borne2 
  • 651 Accesses

  • 42 Citations

  • Explore all metrics

  • Cite this article

Abstract

Hierarchical (\(\mathcal {H}\)-) matrices provide a data-sparse way to approximate fully populated matrices. The two basic steps in the construction of an \(\mathcal {H}\)-matrix are (a) the hierarchical construction of a matrix block partition, and (b) the blockwise approximation of matrix data by low rank matrices. In the context of finite element discretisations of elliptic boundary value problems, \(\mathcal {H}\)-matrices can be used for the construction of preconditioners such as approximate \(\mathcal {H}\)-LU factors. In this paper, we develop a new black box approach to construct the necessary partition. This new approach is based on the matrix graph of the sparse stiffness matrix and no longer requires geometric data associated with the indices like the standard clustering algorithms. The black box clustering and a subsequent \(\mathcal {H}\)-LU factorisation have been implemented in parallel, and we provide numerical results in which the resulting black box \(\mathcal {H}\)-LU factorisation is used as a preconditioner in the iterative solution of the discrete (three-dimensional) convection-diffusion equation.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Bebendorf, M.: Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM Num. Anal. 45, 1472–1494 (2007)

    Article  MathSciNet  Google Scholar 

  2. Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices (2003). Lecture Notes No. 21, Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany, available online at http://www.mis.mpg.de/preprints/ln/, revised version June (2006)

  3. Börm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applications. Eng. Anal. Boundary Elements 27, 405–422 (2003)

    Article  MATH  Google Scholar 

  4. Brainman, I., Toledo, S.: Nested-dissection orderings for sparse LU with partial pivoting. SIAM J. Mat. Anal. Appl. 23, 998–1012 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations. In: Sparsity and its Applications, pp. 257–284. Cambridge University Press, Cambridge (1984)

  6. Bröker, O., Grote, M., Mayer, C., Reusken, A.: Robust parallel smoothing for multigrid via sparse approximate inverses. SIAM J. Sci. Comput. 23, 1396–1417 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davis, T.A.: Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Soft. 30(2), 196–199 (2004)

    Article  MATH  Google Scholar 

  8. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing. Addison Wesley, Reading (2003)

  10. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \({{\mathcal{H}}}\)-matrices. Computing 70, 295–334 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grasedyck, L., Kriemann, R., Borne, S.L.: Parallel Black Box Domain Decomposition Based \({\mathcal{H}}\)-LU Preconditioning. Tech. rep., Max-Planck-Institute MIS (2005)

  12. Grasedyck, L., Kriemann, R., Le Borne, S.: Domain decomposition based \({{\mathcal{H}}}\)-LU preconditioning. Numer. Math. (2006) (submitted)

  13. Grasedyck, L., Le Borne, S.: \({{\mathcal{H}}}\)-matrix preconditioners in convection-dominated problems. SIAM J. Mat. Anal. 27, 1172–1183 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haase, G., Kuhn, M., Reitzinger, S.: Parallel AMG on distributed memory computers. SIAM J. Sci.Comp. 24(2), 410–427 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hackbusch, W.: A sparse matrix arithmetic based on \({{\mathcal{H}}}\)-matrices. Part I: Introduction to \({{\mathcal{H}}}\)-matrices. Computing 62, 89–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hackbusch, W.: Direct domain decomposition using the hierarchical matrix technique. In: Herrera, I., Keyes, D., Widlund, O., Yates, R. (eds.) Domain Decomposition Methods in Science and Engineering, pp. 39–50. UNAM (2003)

  17. Hendrickson, B., Leland, R.: The Chaco User’s Guide: Version 2.0. Tech. Rep. SAND94–2692, Sandia National Laboratories (1994)

  18. Hendrickson, B., Rothberg, E.: Improving the run time and quality of nested dissection ordering. SIAM J. Sci. Comp. 20, 468–489 (1998)

    Article  MathSciNet  Google Scholar 

  19. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kriemann, R.: Parallele Algorithmen für \({\mathcal {H}}\)-Matrizen. Ph.D. thesis, Universität Kiel (2005)

  21. Le Borne, S., Oliveira, S., Yang, F.: \({{\mathcal{H}}}\)-matrix preconditioners for symmetric saddle-point systems from meshfree discretizations. Numer. Linear Algebra Appl. (2006) (in press)

  22. Lintner, M.: The eigenvalue problem for the 2d Laplacian in \({{\mathcal{H}}}\)-matrix arithmetic and application to the heat and wave equation. Computing 72, 293–323 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM J. Numer. Anal. 16, 346–358 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oliveira, S., Yang, F.: An algebraic approach for \(\mathcal {H}\)-matrix preconditioners. Computing 80, 169–188 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pellegrin, F.: SCOTCH 5.0 User’s guide. Tech. rep., LaBRI, Université Bordeaux I (2007)

  26. Ruge, R.W., Stüben, K.: Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG). In: Paddon, H.H.D.J. (ed.) Multigrid Methods for Integral and Differential Equations, pp. 169–212. Clarenden Press, Oxford (1985)

  27. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. J. Future Generat. Comput. Syst. 20, 475–487 (2004)

    Article  Google Scholar 

  28. Schenk, O., Gärtner, K.: On fast factorization pivoting methods for symmetric indefinite systems. Elec. Trans. Numer. Anal. 23, 158–179 (2006)

    MATH  Google Scholar 

  29. Schenk, O., Gärtner, K., Fichtner, W.: Efficient sparse LU factorization with left-right looking strategy on shared memory multiprocessors. BIT 40, 158–176 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Max-Planck-Institute for Mathematics in the Sciences, 04103, Leipzig, Germany

    Lars Grasedyck & Ronald Kriemann

  2. Department of Mathematics, Tennessee Technological University, Box 5054, Cookeville, TN, 38505, USA

    Sabine Le Borne

Authors
  1. Lars Grasedyck
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ronald Kriemann
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Sabine Le Borne
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Lars Grasedyck.

Additional information

Communicated by G. Wittum.

Dedicated to Wolfgang Hackbusch on the occasion of his 60th birthday.

The work was supported in part by the US Department of Energy under Grant No. DE-FG02-04ER25649 and by the National Science Foundation under grant No. DMS-0408950.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Grasedyck, L., Kriemann, R. & Le Borne, S. Parallel black box \(\mathcal {H}\)-LU preconditioning for elliptic boundary value problems. Comput. Visual Sci. 11, 273–291 (2008). https://doi.org/10.1007/s00791-008-0098-9

Download citation

  • Received: 15 October 2007

  • Accepted: 10 January 2008

  • Published: 01 April 2008

  • Issue Date: September 2008

  • DOI: https://doi.org/10.1007/s00791-008-0098-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Hierarchical matrices
  • Black box clustering
  • Preconditioning
  • LU

Mathematics Subject Classification (2000)

  • 65F05
  • 65F30
  • 65F50
  • 65N55

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature