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Abstract Hierarchical (H -) matrices provide a data-sparse
way to approximate fully populated matrices. The two basic
steps in the construction of an H -matrix are (a) the hierar-
chical construction of a matrix block partition, and (b) the
blockwise approximation of matrix data by low rank matri-
ces. In the context of finite element discretisations of elliptic
boundary value problems, H -matrices can be used for the
construction of preconditioners such as approximate H -LU
factors. In this paper, we develop a new black box approach
to construct the necessary partition. This new approach is
based on the matrix graph of the sparse stiffness matrix and
no longer requires geometric data associated with the indi-
ces like the standard clustering algorithms. The black box
clustering and a subsequent H -LU factorisation have been
implemented in parallel, and we provide numerical results in
which the resulting black box H -LU factorisation is used
as a preconditioner in the iterative solution of the discrete
(three-dimensional) convection-diffusion equation.
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1 Introduction

Hierarchical (H -) matrices have first been introduced in
1999 [15] and since then have entered into a wide range of
applications. They provide a format for the data-sparse repre-
sentation of fully populated matrices. The key idea is to reor-
der the matrix rows and columns so that certain sub-blocks
of the reordered matrix can be approximated by low-rank
matrices. These low-rank matrices can be represented by a
product of two rectangular matrices as follows: let A ∈ R

n×n

with rank(A) = k and k � n. Then there exist matrices
B, C ∈ R

n×k such that A = BCT . Whereas A has n2 entries,
B and C together have 2kn entries which results in signifi-
cant savings in storage if k � n. A new H -matrix arithmetic
has been developed which allows exact matrix–vector mul-
tiplication and approximate matrix(-matrix) operations such
as addition, multiplication, inversion and LU factorisation in
this format in nearly optimal complexity O(n logα n) with a
moderate parameter α [10].

In finite element methods, the stiffness matrix is sparse but
its LU factors are fully populated and can be approximated
by an H -matrix. Such approximate H -LU factors may then
be used as a preconditioner in iterative methods [13,22].

In most of the previous papers on H -matrices [3,10,
13], the construction of the H -matrix block structure is
based on geometric information associated with the under-
lying indices. Each index is associated with its basis func-
tion and a (rectangular bounding box) of the support of the
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basis function. The standard geometric clustering algorithms,
which include the bisection as well as the nested dissection
clustering, compute Euclidean diameters and distances based
on these geometric entities in order to construct the block
partition of the H -matrix format.

In this paper, we introduce an algebraic clustering
algorithm that is applicable to sparse matrices and only needs
the matrix itself as input. A matrix graph is constructed
based on the sparsity structure of the matrix, and the subse-
quent algebraic clustering algorithm is based on this matrix
graph. We therefore obtain an algorithm for an algebraic
H -matrix construction that is similar to algebraic multigrid
(AMG) techniques [5,6,14,26]. A related black box cluster-
ing approach based on heavy edge matching has also been
developed in [21,24].

Given an H -matrix format, we can convert the sparse
stiffness matrix into an H -matrix and compute its H -LU
factorisation. This yields a preconditioner to accelerate the
iterative solution of the linear system of equations. We will
apply the resulting black box preconditioner in the iterative
solution of convection-dominated partial differential equa-
tions, providing comparisons with standard H -LU factori-
sation based on geometric clusterings as well as the direct
solvers PARDISO [27–29] and UMFPACK [7].

The remainder of this paper is structured as follows: Sect.
2 is devoted to preliminaries: it will provide an introduction
of the model partial differential equation and a brief intro-
duction to the construction and arithmetics of H -matrices.
Section 3 introduces the new black box clustering algorithm.
It begins with a simple, motivating example and then contin-
ues with the general case. Section 4 deals with the parallel
implementation of the H -LU factorisation based on black
box nested dissection clustering, and Sect. 5 provides numer-
ical results for the new approaches in comparison with stan-
dard geometric H -matrix techniques as well as the PARD-
ISO and the UMFPACK solver.

This article is dedicated to Wolfgang Hackbusch on the
occasion of his sixtieth birthday.

2 Preliminaries: the model problem and H -Matrices

2.1 The finite element model problem

Throughout this paper, we consider a linear system of
equations of the form Au = b, where A is the sparse Galer-
kin stiffness matrix of an invertible second order uniformly
elliptic partial differential operator A : H1

0 (�)→ H−1(�),

A u = −divσ∇u + b · ∇u + cu, (1)

on a domain � ⊂ R
d with L∞-coefficients σ : �→ R

d×d ,
b : �→ R

d , c : �→ R. The N -dimensional finite element
space is denoted by VN ⊂ H1

0 (�) and is spanned by a local

basis (ϕi )i∈I with index set I := {1, . . . , N }, where the
term “local” is defined as follows:

Assumption 1 (Locality) We assume that for the basis func-
tions (ϕi )i∈I the supports �i = supp(ϕi ) are locally sepa-
rated in the sense that there exist two constants Csep and nmin

so that

max
i∈I

#
{

j ∈ I | dist(�i ,� j ) ≤ C−1
sep diam(�i )

}
≤ nmin.

(2)

The left-hand side is the maximal number of basis functions
with ‘relatively close’ supports.

Remark 1 1. The stiffness matrix A is sparse with at most
Nnmin non-zero entries.

2. The locality condition (2) does not require shape regu-
larity or a K-mesh property (neighboured elements are
of comparable size). On the other hand, it bounds the
number of non-neighboured elements that are close to
each other in R

d .

We will define geometric entities which are required in
the original H -matrix constructions but will no longer be
required for our new black box clustering approach.

Definition 1 (Geometric entities) Every index i ∈ I is
associated with a basis function ϕi of the underlying finite
element space VN . For every i , we assign a (fixed) nodal
point xi such that

xi ∈ suppϕi . (3)

For a cluster (i.e. subset) v ⊂ I of indices, we define its
support by

�v :=
⋃
j∈v

suppϕ j . (4)

The geometric H -matrix construction (see Subsect. 2.2)
needs (upper bounds of) the diameters of these clusters as
well as the distances between two such clusters (both in the
Euclidean norm). Since diameters and distances can be com-
puted much more efficiently for rectangular boxes than for
arbitrarily shaped domains, we supply each cluster v with a
bounding box

Bv =
d⊗

j=1

[αv, j , βv, j ] (5)

that contains �v , i.e. �v ⊂ Bv .

2.2 A brief introduction to H -Matrices

In this section, we will review H -matrices and their arith-
metic. An H -matrix provides a data-sparse approximation
to a dense matrix by replacing certain blocks of the matrix
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Black box clustering for H -Matrices 275

by matrices of low rank which can be stored very efficiently.
The blocks which allow for such low rank representations
are selected from a hierarchy of partitions organised in a so-
called cluster tree.

Definition 2 (Cluster tree)
Let TI = (V, E) be a tree with vertex set V and edge

set E . For a vertex v ∈ V , we define the set of successors
(or sons) of v as S(v) := {w ∈ V | (v,w) ∈ E}. Corre-
spondingly, the predecessor (or father) of a non-root vertex v

is defined as the unique vertex F(v) s.t. (F(v), v) ∈ E . The
tree TI is called a cluster tree of I if its vertices consist of
subsets of I and satisfy the following conditions (cf. Fig. 1
(left)):

1. I ∈ V is the root of TI , and v ⊂ I , v �= ∅, for all
v ∈ V .

2. For all v ∈ V , there holds S(v) = ∅ or v = ⋃̇
w∈S(v)w.

The depth of a cluster tree, d(TI ), is defined as the length of
the longest path in TI . In the following, we identify V and
TI , i.e. we write v ∈ TI instead of v ∈ V . The nodes v ∈ V
are called clusters. The nodes with no successors are called
leaves and define the set L (TI ) := {v ∈ TI | S(v) = ∅}.

In previous papers, several strategies have been introduced
to construct a cluster tree from a given index set, e.g. bisec-
tion or nested dissection, but most of these constructions
are based on the underlying geometric entities defined in
Definition 1. As an example, we will review the geometric
bisection clustering. Here, a cluster v with support �v (4) is
subdivided into two smaller clusters v1, v2 as follows:

1. Let Qv denote a box that contains all nodal points (xi )i∈v ,
cf. (3). For the root cluster this could be the bounding box
QI := BI.

2. Subdivide the box Qv into two boxes Qv = Q1 ∪̇ Q2

of equal size.
3. Define the two successors S(v) = {v1, v2} of v by

v1 := {i ∈ v | xi ∈ Q1}, v2 := {i ∈ v | xi ∈ Q2}

and use the boxes Qv1 := Q1, Qv2 := Q2 for the further
subdivision of the sons.

The subdivision is typically performed such that the
resulting diameters of the boxes associated with successor
clusters become as small as possible. A single step of geomet-
ric bisection is illustrated in Fig. 2 where a clusterv consisting
of 17 vertices is subdivided into clusters v1, v2 consisting of
8 and 9 vertices lying in Qv1 and Qv2 , resp. Here, the sub-
division into v1 and v2 is based on the geometric locations
associated with the indices.

Given a cluster tree TI , any two clusters s, t ∈ TI form
a product s × t , also called a block cluster, which can be
associated with the corresponding matrix block (Ai j )i∈s, j∈t

(cf. Fig. 1 (right)). We will use an admissibility condition to
decide whether such a block will be allowed in a block parti-
tion of the matrix A or will be further subdivided. In general,
an admissibility condition is a Boolean function

Adm : TI × TI → {true,false}.
For cluster trees based on the underlying geometry,

typical admissibility conditions use geometric information,
e.g. the standard admissibility condition is given by

AdmS(s × t) = true :⇔
min(diam(Bs), diam(Bt )) ≤ η dist(Bs, Bt ) (6)

for some 0 < η. Here, Bs, Bt are the bounding boxes (5)
of the clusters s, t , resp., and the distance and diameters are
computed with respect to the Euclidean norm.

Given a cluster tree TI and an admissibility condition,
we construct a hierarchy of block partitionings of the prod-
uct index set I × I . The hierarchy forms a tree structure
and is organised in a block cluster tree TI×I :

Definition 3 (Block cluster tree) Let TI be a cluster tree
of the index set I . A cluster tree TI×I is called a block
cluster tree (based upon TI ) if for all v ∈ TI×I there exist
s, t ∈ TI such that v = s × t . The nodes v ∈ TI×I are
called block clusters.

A block cluster tree may be constructed from a given clus-
ter tree in the canonical way defined by Algorithm 1 (cf. Fig.
1), which we will employ for all cluster trees constructed in
this paper.

Algorithm 1 Canonical block cluster tree construction
procedure bct_construct( s, t, Adm(·), nmin )

if Adm(s × t) = true ∨min {#s, #t} ≤ nmin then
S(s × t) := ∅;

else
for all s′ ∈ S(s) do

for all t ′ ∈ S(t) do
S(s× t) := S(s× t)∪{

bct_construct(s′, t ′, Adm(·), nmin)
}
;

end for
end for

end if
return s × t ;

end

The parameter nmin (from Assumption 1) has to be chosen
large enough to fulfil locality condition (2). For rather small
blocks, the matrix arithmetic of a full matrix is more efficient
than that of a structured matrix. Therefore, nmin should be
chosen at least nmin ≥ 10, which is typically at the same time
sufficient for Assumption 1.
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Fig. 1 Left: A cluster tree TI . Right: The four levels of the block cluster tree TI×I , where nodes that are further refined are light red, inadmissible
leaves are red, and admissible leaves are green

Qv
Qv1

Qv2

Fig. 2 Geometric bisection

The leaves of a block cluster tree obtained through this
construction yield a disjoint partition of the product index
set I ×I .

In Fig. 1, we provide a simple example for a cluster tree
and the corresponding block cluster tree. The indices in this
example correspond to the continuous, piecewise linear basis
functions of a regularly refined unit interval (in lexicograph-
ical order).

Matrix blocks which correspond to admissible block clus-
ters will be approximated in a data-sparse format by the fol-
lowing Rk-matrix representation.

Definition 4 (Rk-matrix representation) Let k, n, m ∈ N0.
Let M ∈ R

n×m be a matrix of at most rank k. A representa-
tion of M in factorised form

M = ABT, A ∈ R
n×k, B ∈ R

m×k, (7)

with A and B stored in full matrix representation, is called
an Rk-matrix representation of M , or, in short, we call M an
Rk-matrix.

If the rank k is small compared to the matrix size given
by n and m, we obtain considerable savings in the storage
and work complexities of an Rk-matrix compared to a full
matrix [10].

Finally, we can introduce the definition of a hierarchical
matrix:

Definition 5 (H -matrix) Let k, nmin ∈ N0. The set of H -
matrices induced by a block cluster tree T := TI×I with
blockwise rank k and minimum block size nmin is defined by

H (T, k) := {M ∈ R
I×I | ∀s × t ∈ L (T ) :

rank(M |s×t ) ≤ k or min {#s, #t} ≤ nmin}. (8)

Blocks M |s×t with rank(M |s×t ) ≤ k are stored as Rk-matri-
ces whereas all other blocks are stored as full matrices.

Whereas the classical H -matrix uses a fixed rank for the
Rk-blocks, it is possible to replace it by variable (or adap-
tive) ranks in order to enforce a desired relative accuracy
within the individual blocks [10]. In particular, in the adap-
tive setting, for a given admissible block s×t , we set the rank
k = k(M |s×t ) of the corresponding matrix block M |s×t as
follows:

k(M |s×t ) := min{k′ ∈ N0 | σk′+1 ≤ δσ1} (9)

where σi denotes the i-th largest singular value of M |s×t ,
and 0 < δ < 1 denotes the desired relative accuracy within
each block.

2.3 Arithmetic of H -matrices

Given two H -matrices A, B ∈H (T, k) based on the same
block cluster tree T , i.e. with the same block structure, the
exact sum or product of these two matrices will typically not
belong to H (T, k). In the case of matrix addition, we have
A + B ∈ H (T, 2k); the rank of an exact matrix product
is less obvious. We will use a truncation operator T H

k←k′ to
define the H -matrix addition C := A⊕H B and H -matrix
multiplication C := A ⊗H B such that C ∈H (T, k).

A truncation of a rank k′ matrix R to rank k < k′ is
defined as the best approximation with respect to the Frobe-
nius (or spectral) norm in the set of rank k matrices. In
the context of H -matrices, we use such truncations for all
admissible (rank k′) blocks. Using truncated versions of the
QR-decomposition and singular value decomposition, the
truncation of a rank k′ matrix R ∈ R

n,m (given in the form
R = ABT where A ∈ R

n,k′ and B ∈ R
m,k′ ) to a lower rank

can be computed with complexity O
(
(k′)2(n + m)

)
; further

details are provided in [10]. We then define the H -matrix
addition and multiplication as follows:

A ⊕H B := T H
k←2k(A + B);

A ⊗H B := T H
k←k′(A · B)

where k′ ≤ c(p + 1)k is the rank of the exact matrix prod-
uct, c denotes some constant (which depends on the block
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cluster tree T ) and p denotes the depth (Definition 2) of the
tree. Estimates that show that the H -matrix addition and
multiplication have almost optimal complexity for typical
H -structures are provided in [10] along with details on the
efficient implementation of these operations. The H -matrix
addition and multiplication are operations required to define
an H -inversion as well as an H -LU factorisation recur-
sively in the block structure. Details on these algorithms can
be found in [1,2,10,13]. We will provide a parallel version
of the H -LU factorisation (including auxiliary routines) in
Sect. 4.

3 Black box clustering for sparse matrices

H -matrices are based on a block cluster tree TI×I that
describes the hierarchical partition of a matrix into admis-
sible and inadmissible blocks. The formatted arithmetic in
the H -matrix format requires only this partition but not the
geometric information (i.e. cluster diameters and distances)
by which the cluster tree TI was built.

In some applications geometric information might not be
available. Instead, only the already assembled sparse stiffness
matrix A is provided. In this case, we will extract information
on the connectivity of the indices from the matrix directly, or
rather from its matrix graph, as is defined next, to construct
a suitable partition of the index set.

Definition 6 (Matrix graph) The (directed) graph G (A) =
(VA, E A) of a matrix A ∈ R

I×I is defined by the vertex
and edge sets

VA := I , E A := {(i, j) ∈ I ×I | i �= j ∧ Ai j �= 0}.
The restriction G (A)|V ′ to a subset V ′ ⊆ VA is defined by
G (A)|V ′ := (V ′, E A ∩ V ′ × V ′). Furthermore, for v ∈ VA,
we call # {u ∈ VA | (u, v) ∈ E A ∨ (v, u) ∈ E A} the degree
of the node v.

We say that G is connected if there is a path i= j0, . . . ,
j	= j with ( jν, jν+1) ∈ E A from every node i ∈ I to every
other node j ∈ I \{i}. The length of such a path is 	.

Subdividing the index set then corresponds to partitioning
the matrix graph G (A).

In order to simplify the algorithms and presentation, we
use the symmetrised matrix graph

Gsym(A) = (V, E), V := I ,

E := {(i, j) ∈ I ×I | i �= j ∧ (Ai j �= 0 ∨ A ji �= 0)}.
(10)

In Remark 5, we will comment on non-symmetric matrix
graphs.

3.1 Breadth first search clustering

We will first show the close relationship between graph
partitioning and geometric clustering in our model prob-
lem of a regular grid which will serve as a motivation for
the subsequent black box clustering. Let A be the stiffness
matrix resulting from the finite element discretisation of the
Poisson problem on the (regularly triangulated) unit square
[0, 1]2. Let h denote the grid-width. Figure 3 shows the
connectivity of the indices and therefore the matrix graph
G (A) = Gsym(A) of A.

Remark 2 Let i, j ∈ VA be two nodes of G (A) and let
xi , x j ∈ R

d denote the nodal points associated with the indi-
ces i, j (see Definition 1). Then, ai j �= 0 implies supp ϕi ∩
supp ϕ j �= ∅which in turn implies ‖xi − x j‖ ≤ ch, for some
constant c ≥ 0.

For our model problem with a uniform tensor product grid
in R

2 we have: ai j �= 0 �⇒ ‖xi − x j‖ ≤ h. Furthermore,
if i and j are connected by a path of length 	, we can bound
the Euclidean distance by ‖xi − x j‖ ≤ 	h.

For an arbitrary path between i and j this bound is usu-
ally too large and only the shortest path should be considered.
This example shows that in the case of a regular grid, we can
estimate the distance between two nodes by computing the
(shortest) path length connecting these nodes, without knowl-
edge of the geometrical data associated with these nodes.

Motivated by this example, we will now develop a black
box clustering technique which no longer requires geometric
information. Instead of the geometrical (i.e. Euclidean) dis-
tance and diameter of clusters, the path lengths in the matrix-
graph are used:

Definition 7 (Distance and Diameter in a Graph) Let G (A)

be a connected graph and let i, j ∈ VA with i = j0, . . . , j	 =
j , ( jν, jν+1) ∈ E A, 0 ≤ ν < 	, be the shortest path in G (A)

from i to j . Then, we define the distance between i and j as
distG (A)(i, j) := 	. For two sets of nodes I1, I2 ⊆ VA the

Fig. 3 Matrix graph in the model problem
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distance distG (A)(I1, I2) is defined as

distG (A)(I1, I2) := min
i ′∈I1, j ′∈I2

distG (A)(i
′, j ′).

Furthermore, we define the diameter of G (A) as

diam(G (A)) := max
i ′, j ′∈VA

distG (A)(i
′, j ′).

The computation of the shortest path between two nodes
in a connected graph is performed in O (#E A) by breadth
first search (or BFS), which starts with one node and suc-
cessively extends the current set of nodes by the set of all
adjacent nodes until the destination is reached. Since only
direct neighbours are included in the next iteration step, the
visited set of nodes in a BFS has a small diameter in the
graph, which is the wanted property for the resulting sub-
graphs during graph partitioning.

However, the straightforward approach of using a single
start node for BFS may lead to an unsuitable partitioning (e.g.
one sub-graph being surrounded by the other sub-graph). We
avoid this situation by using two start nodes u, v ∈ VA which
are chosen with a maximal distance. We perform the BFS
algorithm for both nodes simultaneously (or rather, alternat-
ingly). The choice of u and v ensures similar diameters of
the resulting sub-graphs. In Fig. 4, this process is illustrated
with u and v being the lower left (red) and the upper right
(blue) node, respectively. In each step of the BFS algorithm,
the initial node sets Vv = {v} and Vu = {u} are expanded by
the set of adjacent nodes

Vv := Vv ∪
⋃

v′∈Vv

{
i ∈ VA\(Vu ∪ Vv) | (v′, i) ∈ E A

}
and

Vu := Vu ∪
⋃

u′∈Vu

{
i ∈ VA\(Vu ∪ Vv) | (u′, i) ∈ E A

}

Fig. 4 Different levels of graph partitioning via BFS

until all nodes of the graph have been visited, i.e. Vu ∪ Vv =
VA.

It should be noted, that since G (A) is connected, the
sub-graphs G (A)|Vv and G (A)|Vu are also connected. Fur-
thermore, the results of this partitioning method are typically
different from the results obtained by geometrical partition-
ing, e.g. in the situation depicted in Fig. 4 the final separation
plane is not axis aligned.

Algorithm 2 BFS graph partitioning
procedure bb_bfs_part( G = (V, E), v, u )

V ′ := V \ {v, u}; Vv := {v}; Vu := {u};
while V ′ �= ∅ do

Nv :=⋃
w∈Vv

{
w′ ∈ V ′ | (w,w′) ∈ E

}
;

Vv := Vv ∪ Nv ; V ′ := V ′\Nv ;
Nu :=⋃

w∈Vu

{
w′ ∈ V ′ | (w,w′) ∈ E

}
;

Vu := Vu ∪ Nu ; V ′ := V ′\Nu ;
end while;
return {Vv, Vu};

end

By recursively applying Algorithm 2 to the resulting sub-
graphs G (A)|Vv and G (A)|Vu , the index set I is hierarchi-
cally subdivided into a cluster tree. The next steps for the
example in Fig. 4 are shown in Fig. 5.

Finding two nodes in a graph with maximal distance
usually requires quadratic complexity O

(
#V 2

A

)
. Therefore,

the following heuristic approach will be used to determine
nodes with a large, almost maximal distance: We choose an
arbitrary node i0 ∈ VA and compute via BFS a node i1 ∈ VA

with maximal distance to i0, i.e. distG (A)(i0, i1) = max j∈VA

distG (A)(i0, j), which costs O (#VA). Afterwards, this pro-
cess is repeated for i1, i.e. a node i2 ∈ VA is determined with
maximal distance to i1. This can be repeated a fixed number
nBFS > 0 of steps or until the distance between i	 and i	+1

no longer grows. In Fig. 6, this procedure is illustrated by
an example, whereas Algorithm 3 implements the described
method.

Finally, the complete algorithm for partitioning a given
graph based on BFS and simultaneously building a cluster
tree for the given index set is provided in Algorithm 4.

Fig. 5 Next levels of cluster tree construction
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Fig. 6 Determining start nodes
for BFS graph partitioning i1 i1

i0 i 00 i

i2

Algorithm 3 Determine start nodes in BFS black box clus-
tering

procedure bb_bfs_start( G = (V, E) )
choose i0 ∈ V ; determine i1 ∈ V with distG (i0, i1) =
max j∈V distG (i0, j);
for 1 ≤ 	 ≤ nBFS do

determine i	+1 ∈ V with distG (i	, i	+1) =
max j∈V distG (i	, j);
if distG (i	−1, i	) = distG (i	, i	+1) then

return {i	−1, i	};
end if

end for
return {i	, i	+1};

end

Algorithm 4 Black Box BFS-Clustering
procedure bb_ct_build_bfs( G = (V, E) )

if #V ≤ nmin then
return cluster t := V ;

else
{v, u} := bb_bfs_start( G );
{Vv, Vu} := bb_bfs_part( G , v, u )
t1 := bb_ct_build_bfs( G |Vv );
t2 := bb_ct_build_bfs( G |Vu );
return cluster t := V with S (t) := {t1, t2};

end if
end

Lemma 1 (Complexity of black box clustering) The
complexity Nbbc for the BFS based black box clustering in
Algorithm 4 to build the cluster tree TI for A ∈ R

N×N is
bounded by

Nbbc = O (c N depth(TI )),

where c is the maximal degree of a node in G (A).

Proof The assertion is proved by induction over the depth of
TI . For depth(TI ) = 1 we have one cluster and nothing is
to be done. Hence, the assertion is trivially fulfilled.

Now let depth(TI ) > 1 and G = (V, E) be the graph to
be partitioned. The computation of start nodes by
Algorithm 3 requires a bounded number of BFS iterations
each with costs O (#E) = O (c #V ). The partitioning of G
into Vv and Vu by Algorithm 2 is performed with a single
BFS iteration, again resulting in a complexity of O (c #V ).

By induction, the recursion for G |V1 has a complexity of
O

(
c #V1 depth(TV1)

)
and the recursion for G |V2 O

(
c #V2

depth(TV2)
)

respectively. Therefore, the total costs are at
most O (c #V depth(TV )).

The construction of the block cluster tree TI×I is
straightforward (see Algorithm 1) if we can provide an admis-
sibility condition. Since the distance between nodes com-
puted by path lengths corresponds to the geometrical distance
between the position of the associated indices (at least in the
regular grid chosen for the motivation example), we use the
same admissibility condition (6), only now with graph-based
distances and diameters as defined in Definition 7:

Definition 8 (Black box admissibility) For two clusters s, t∈
TI and a (sparse) matrix A ∈ R

I×I , we define the standard
BB-admissibility

s × t is BB-admissible :⇔
min{diam(s), diam(t)} ≤ η distG (A)(s, t). (11)

The weak BB-admissibility is defined by

s × t is weakly BB-admissible :⇔ distG (A)(s, t) > 1

The weak BB-admissibility is the weakest reasonable
admissibility to be used. It may happen that blocks are con-
sidered admissible but will fill in during an H -LU decom-
position.

Unfortunately, the computation of the distance between
two clusters s, t as well as the diameter of a cluster s are
expensive tasks, requiring quadratic complexity in the car-
dinality of the clusters. Fortunately, to assure admissibility,
we only need to assert that η distG (A)(s, t) is larger than
min{diam(s), diam(t)}. For this, it is sufficient to define an
upper bound d̃iam of the diameters of s and t

min{diam(s), diam(t)} ≤ d̃iam.

and check whether

d̃iam ≤ η distG (A)(s, t)

holds.
For the estimation of the diameters of s and t and therefore

for the definition of d̃iam the following lemma is used.

Lemma 2 Let s ∈ TI be a cluster, and let i0 ∈ s. Let i1 ∈ s
be so that

distG (A)(i0, i1) = max
i∈s

distG (A)(i0, i).
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j0

Fig. 7 Worst and best case for ˜diam

Furthermore, let diami0,i1(s) be defined as

diami0,i1(s) := 2 distG (A)(i0, i1).

Then we can estimate

diam(s) ≤ diami0,i1(s) ≤ 2 diam(s). (12)

Proof

diam(s) = max
i, j∈s

distG (A)(i, j) ≤ 2 max
i∈s

distG (A)(i0, i)

≤ diami0,i1(s).

Figure 7 shows an example for optimal and worst case
estimation of the diameter of a graph by diami0,i1 . The diam-
eter of the presented graph is 8, whereas diam j0, j1 = 8 and
diam j2, j3 = 16.

The upper bound diami0,i1(s) from (12) has already been
computed for all interior nodes s ∈ TI \L (TI ) during
Algorithm 4 by Algorithm 3, where i0 and i1 correspond
to the last two considered nodes. For the (small) leaves s ∈
L (TI ), we can compute the exact diameter by BFS in
O

(
n2

min

)
.

Since by (12) a good estimate for the real diameter of the
sub-graphs is provided, we assume

d̃iam ≤ min
{
diami0,i1(s), diami0,i1(t)

}

≤ 2 min {diam(s), diam(t)}
for the following discussion.

Finally, for the standard BB-admissibility to be satisfied
we have to check if d̃iam ≤ η dist(s, t) holds. For this, we
extend the set s by all nodes with a distance less than 1

η
d̃iam

from s to obtain the surrounding U (s):

U (s) :=
{

i ∈ I | η dist(i, s) < d̃iam
}

.

Now, if U (s) ∩ t = ∅, then

∀i ∈ s, j ∈ t : distG (A)(i, j) ≥ 1

η
d̃iam

Fig. 8 Exponential (left) and bounded (right) size of surroundings

holds. This proves the standard BB admissibility for s × t

min {diam(s), diam(t)} ≤ d̃iam ≤ η dist(s, t).

On the other hand, for non-empty intersections U (s)∩t , s×t
is probably not admissible. This depends on the sharpness of
the choice of d̃iam in comparison to min {diam(s), diam(t)}
(see also Remark 4). In such a case, s × t is regarded as
inadmissible.

The complexity of the standard black box admissibility
check depends on the size of the surroundings U (s) and U (t).

In general, this can be O
(

c˜diam#s
)
= O

(
c#s#s

)
, where c is

the maximal degree of nodes in s (see Fig. 8 (left)). In our
model problem on the other hand, the size of a surrounding
grows linearly with the diameter of a graph and exponential
in the dimension.

Remark 3 (Complexity of the Standard BB Adm. Check
[Model Problem]) Let s be a set of nd nodes correspond-
ing to a d-dimensional cube (Fig. 8 (right, center nodes)).
Furthermore, let w.l.o.g. d̃iam ≤ 2 diam(s) hold. Then, for
the surrounding U (s) by d̃iam layers around s the number of
nodes can be estimated as

#U (s) ≤ (n + 2d̃iam)d − nd

= nd
(
(1+ 2d)d − 1

)
∈ O

(
nddd

)
= O

(
#sdd

)
.

Therefore, the standard black box admissibility check for a
block cluster s × t has complexity

O
(

dd max {#s, #t}
)

(13)

With this result we can estimate the complexity for the
construction of the block cluster tree TI×I from a given
cluster tree TI by Algorithm 1 using the standard
BB-admissibility to be approximately O (N log N ) for the
model problem. This is by a factor k less than the storage
requirements for an H -matrix based on TI×I , and by more
than a factor k2 log N less than a subsequent H -LU decom-
position [2]. Therefore, the complexities for the setup of both
the cluster tree and the block cluster tree are dominated by
the complexity of the H -matrix arithmetic based on these
trees. The same behaviour was observed for other problem
classes.
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Remark 4 (Modified standard BB admissibility) The qual-
ity of the block partitioning defined by the above described
admissibility check obviously depends on the estimate of the
minimal diameters of s and t . Consider for example d̃iam ≥
δ min {diam(s), diam(t)} with δ ≥ 1. Now the tested admis-
sibility of the described procedure would become

min {diam(s), diam(t)} ≤ η

δ
dist(s, t).

Alternatively, the parameter η can be modified to fit the
changed admissibility condition due to an overestimation of
the diameter, e.g. η′ := η/δ.

Remark 5 The black box clustering in Algorithm 4 is based
on an undirected, connected graph. This can be generalised
to arbitrary graphs as follows.

1. For disconnected (but undirected) graphs, we can split
the graph into maximal connected parts I = ⋃̇

i=1,...,q
Vi . We then proceed with the clustering of the connected
parts Vi .

2. For a directed graph, we again have to split the graph into
maximal connected parts I = ⋃̇

i=1,...,q Vi , for which
the clustering algorithm is applied individually. In addi-
tion to this, we apply a proper ordering of the connected
components to obtain a block lower triangular form of the
matrix (cf. Fig. 9). To solve such a system, only the inver-
sion, e.g. H -LU factorisation, of the diagonal blocks is
necessary. Furthermore, the off-diagonal matrix blocks
can be stored in the original sparse matrix format, thereby
reducing the storage requirements.

3.2 Clustering via other graph partitioning algorithms

In the previous section, the goal of the partitioning
algorithm was to simulate the geometrical partitioning by
using path lengths in the graph, resulting in a similar decom-
position compared to geometric bisection. Another approach
for a suitable partitioning for H -matrices is the decoupling

3v

3v

2v

2v

v1

v1

4v

3v

2v

v1

4v

4v 3v2vv1 4v

Fig. 9 Splitting into connected parts v1, . . . , v4 and resulting matrix
sparsity structure, left for an undirected and right for a directed graph

of the constructed sub index sets, e.g. the minimisation of the
number of edges between sub-graphs, the so called edge-cut.
Consider for instance a matrix A ∈ R

I×I with the disjoint
decomposition of I into I = I1 ∪ I2. If the matrix block
A12 ∈ R

I1×I2 contains only a few entries, this directly trans-
lates into a low rank of A12, which remains low during an
H -LU factorisation. Note that we have assumed G (A) to
be connected and hence the graphs G (A)|I1 and G (A)|I2 are
connected by at least one edge.

Minimising the edge-cut between sub-graphs during graph
partitioning is the goal of many such algorithms described
in the literature, e.g. via spectral or multilevel methods (see
also the Discussion in [19]), which also found their way into
graph partitioning software, e.g. METIS [19], SCOTCH [25]
or CHACO [17].

Other strategies are based on maximal parallel efficiency,
e.g. when decomposing a grid in a parallel domain decom-
position method, or trying to minimise the fill-in during LU
factorisation of sparse matrices.

Not all graph partitioning algorithms are applicable in the
context of H -matrices. Strategies based on graph colouring
for instance result in a decomposition of the graph with a
very large number of edges between individual sub-graphs
and therefore in a high rank of the corresponding matrix
blocks. Also, for efficiency of the H -matrix algorithms, the
computed sub-graphs shall be of similar size.

The above mentioned multilevel algorithms minimising
the edge-cut fulfil these requests. Nevertheless, they can only
be considered to be heuristics even in the case of the model
problem in contrast to the BFS algorithm. However, the
numerical results in Sect. 5 will demonstrate the effectiveness
of these graph partitioning methods.

The algorithm for constructing a cluster tree using a
general graph partitioning algorithm is similar to Algorithm 4
and presented in Algorithm 5. There, “partition()” denotes
the given partitioning procedure.

Algorithm 5 General Black Box Clustering
procedure bb_ct_build( G = (V, E) )

if #V ≤ nmin then
return cluster t := V ;

else
{G1, G2} = partition( G );
t1 := bb_ct_build( G1 );
t2 := bb_ct_build( G2 );
return cluster t := V with S (t) := {t1, t2};

end if
end

3.3 Nested dissection

Many direct methods for sparse linear systems perform an
LU factorisation of the original matrix after some reordering
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of the indices in order to reduce fill-ins. A popular reordering
method is the so-called nested dissection method which
exploits the concept of separation. The idea of nested dis-
section has been introduced more than 30 years ago [8] and
since then attracted considerable attention (see, e.g. [4,18]
and the references therein). The main idea is to separate the
vertices in a (matrix) graph G (A) into three parts: two discon-
nected sub-graphs G1 and G2 and a third one, � referred to
as an interior boundary or (vertex) separator which contains
couplings with both of the other two parts. The nodes in the
sub-graphs G1 and G2 are numbered first and the nodes in �

are numbered last. This process is then repeated recursively
in G1 and G2. An illustration of the resulting sparsity pattern
is shown in Fig. 10 for the first two decomposition steps.

A favourable property of such an ordering is that a
subsequent LU factorisation maintains a major part of this
sparsity structure, i.e. there occurs no fill-in in the large, off-
diagonal zero matrix blocks. In fact, in the case of a reg-
ular three-dimensional grid, the computational complexity
amounts to O

(
N 2

)
for a matrix A ∈ R

N×N [23]. In order to
obtain a (nearly) optimal complexity, we propose to approx-
imate the nonzero, off-diagonal blocks in the H -matrix rep-
resentation and compute them using H -matrix arithmetic
(see also [11,12]).

Especially suited for nested dissection are graph
partitioning algorithms trying to minimise the edge-cut
between sub-graphs of comparable size. In that case, the size
of the separator is also small and hence, the size of the zero
off-diagonal blocks is large. Applying those algorithms to
a given matrix graph is therefore the first step in a nested
dissection graph partitioning.

The next step is the identification of the vertex separator,
whose removal decouples the remaining sub-graphs. Such
a separator is not unique and can be computed in different
ways. In [19], an algorithm for computing a vertex cover, i.e.
a subset of nodes incident to all edges, for the set of edges
connecting both sub-graphs is used. For this, both end-ver-
tices of a connecting edge can be removed from the graph
and put into the vertex cover until no edge between both sub-
graphs remains. Since all vertex covers must at least contain
as many nodes as there are edges in the edge-cut, this simple
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Fig. 10 Nested dissection and resulting matrix sparsity structure

algorithm computes a vertex cover of at most two times the
size of a minimal vertex cover. Better results, e.g. smaller
vertex separators have been achieved by only removing one
vertex per edge from the larger of the two sub-graphs. The
final method is presented in Algorithm 6.

Algorithm 6 Computing a vertex separator
procedure vtxsep ( G = (V, E), V1, V2 )

Let Eec := {(v, u) | (v ∈ V1 ∧ u ∈ V2) ∨ (u ∈ V1 ∧ v ∈ V2)};
if #V1 > #V2 then Vlarge := V1
else Vlarge := V2;
Vvtx := ∅;
for all (v, u) ∈ Eec do

W := Vlarge ∩ {v, u};
Vvtx := Vvtx ∪W ;
Eec := Eec\ ((W × V ) ∪ (V ×W ));

end for;
return Vvtx;

end;

In contrast to the classical nested dissection approach, the
matrices corresponding to sub-graph-to-separator couplings
or to separator-to-separator couplings are not represented by
dense matrices but by H -matrices. Therefore, the node set
of the vertex separator has to be further partitioned. Here
the problem arises that the graph G (A)|� is in general not
connected, even if G (A) was (cf. Fig. 11). Nevertheless, the
partitioning should be based on the distance in the original
graph.

To achieve this, we use a modified form of the BFS
partitioning algorithm, where the connectivity in the ver-
tex separator is not defined in G (A)|� but in the surround-
ing graph G (A). For the determination of the start nodes by
Algorithm 3 this means, that although the BFS is performed
in G (A), only nodes in � are considered to be valid start
nodes. The partitioning of the graph G (A)|� via Algorithm 2
follows a similar pattern: the BFS is done in G (A) but the
sets Vv and Vu are only updated with nodes in the vertex
separator.

Fig. 11 Not connected separator of a connected graph
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Further subdivision of the subsets �1 and �2 of a partition-
ing of � is again performed in a surrounding graph, which
can be G (A) or a sufficiently large restriction of G (A):

Remark 6 A BFS iteration for G (A)|� in G (A) can be
stopped as soon as all nodes in the vertex separator have
been visited. Let Vvis ⊆ VA be the final set of visited nodes
during this BFS. Then Vvis represents a restriction of the node
set VA sufficient for computing the distance between nodes
in � in G (A). Hence, for further BFS iterations, G (A)|Vvis

can be used instead of G (A). For each V ⊆ � we define

Gmin(V ) := G (A)|V ′vis

to be the minimal surrounding graph computed during the
BFS with V ′vis being the minimal set of visited nodes.

Algorithm 7 combines all these algorithms into a proce-
dure for building a cluster tree for a given vertex separa-
tor. There, “bb_bfs_start_vtxsep” and “bb_bfs_part_vtxsep”
are Algorithms 3 and 2, respectively, with the modifications
described above.

Algorithm 7 Graph Partitioning of a Vertex Separator
procedure bb_ct_build_vtxsep ( V, Gsur )

if #V ≤ nmin then
return cluster t := V ;

else
{v, u} := bb_bfs_start_vtxsep( V, Gsur );
{Vv, Vu} := bb_bfs_part_vtxsep( V, Gsur, u, v )
t1 := bb_ct_build_vtxsep( Vv, Gmin(Vv) );
t2 := bb_ct_build_vtxsep( Vu , Gmin(Vu) );
return cluster t := V with S (t) := {t1, t2};

end if ;
end;

Lemma 3 (Complexity of vertex separator partitioning) Let
G = (VG , EG ) be a connected graph and Vvtx be the com-
puted vertex separator. Then the complexity for building a
cluster tree T (Vvtx) for Vvtx by Algorithm 7 is

O (#EG depth(T (Vvtx))) . (14)

Proof Computing start nodes and partitioning V in Gsur =
(V, E) into Vv and Vu in Algorithm 7 involves a fixed num-
ber of BFS iterations in Gsur. Therefore, the costs are O (#E).
Furthermore, due to construction by BFS, the sum of the
edges in Gmin(Vv) and Gmin(Vu) is at most #E . Therefore, on
each level of the cluster tree, the costs for all BFS iterations
together is O (#E). Since the number of levels is defined by
depth(T (Vvtx)), this proves (14).

Finally, we can consider the construction of the cluster
tree for an index set I . The basic procedure stays the same
as in Algorithm 5, i.e. the partitioning of the index set. In
addition to this, the computation of the vertex separator and

the construction of its cluster tree is included. Algorithm 8
shows the final method, where “partition()” again denotes a
given graph partitioning algorithm suitable for H -matrices.

Algorithm 8 General Black Box Clustering with Nested Dis-
section

procedure bb_ct_build_nd( G = (V, E) )
if #V ≤ nmin then

return cluster t := V ;
else
{G1, G2} = partition( G );
Vvtx := vtxsep(G , V (G1), V (G2));
t1 := bb_ct_build_nd( G1 );
t2 := bb_ct_build_nd( G2 );
t3 := bb_ct_build_vtxsep( Vvtx, Gmin(Vvtx) );
return cluster t := V with S (t) := {t1, t2, t3};

end if
end

Lemma 4 (Complexity of black box clustering with nested
dissection) Let “partition()” be a graph partitioning
algorithm to be used in Algorithm 8 with costs of at most
O (#V + #E) for a graph G = (V, E). Then the complexity
for computing a cluster tree TI for a given sparse matrix
A ∈ R

N×N by Algorithm 8 is

Nbbc,nd = O (c N depth(TI )) , (15)

where c is the maximal degree of a node in G (A).

Proof The proof is similar to the proof for Lemma 1.
The only difference is in the induction step, where we
observe that, by assumption, the partitioning costs are
O (#V + #E) = O (c #V ). Again by induction and together
with Lemma 3 the total cost for computing TV stays within
O (c #V depth(TV )).

For the construction of the block cluster tree the admissi-
bility condition from Definition 8 has to be modified to make
use of the decoupling of the indices by the vertex separator:

Definition 9 (Nested dissection black box admissibility) Let
adm : T → {false,true} be a black box admissibility
condition as defined in Definition 8. Then, for two clusters
s, t ∈ TI and a (sparse) matrix A ∈ R

I×I , we define the
nested dissection BB-admissibility (or ND-BB-admissibility)
of adm as

s × t is ND-BB-admissible :⇔ adm(s × t) = true ∨
(s �= t ∧ neither s nor t is a vertex separator) . (16)

Remark 7 For testing the admissibility of s×t with the given
admissibility condition adm in Definition 9, the distance and
diameter of a cluster are defined in terms of Gmin(s) and
Gmin(t).

123



284 Lars Grasedyck et al.

Fig. 12 Different size of clusters in vertex separator (green) and graph
(orange) after eight partitioning steps in the model problem

Remark 8 Since the vertex separator between two graphs is
usually much smaller than the graphs themselves, the depths
of the corresponding cluster trees differ in magnitude. By
following the algebraic clustering described above, the dif-
ference of the diameters of the vertex separator and the sub-
graphs grows rapidly by each partitioning step, leading to an
unbalanced cluster tree in terms of path lengths and cluster
size per tree-level. The result of this imbalance are large con-
stants in the complexity of the H -arithmetic, e.g. the sparsity
constant Csp [10].

As an example, consider the situation in the model
problem depicted in Fig. 12. For simplicity, we assume that
the partitioning of the index set follows the geometrical algo-
rithm with an alternating separation axis in x and y direction.
After 2 	 partitioning steps, the innermost graph has 2	−1

neighbouring clusters of the first vertex separator. The cor-
responding block clusters are inadmissible.

To avoid this situation, during the partitioning of the
vertex separator idle steps are introduced, i.e. steps where
no decomposition of the node set is performed and triv-
ial clusters with only one son are constructed. For a graph
G decomposed into G1 = (V1, E1), G2(V2, E2) and a ver-
tex separator Vvtx, the depth of T (Vvtx) should be equal to
p := max {depth(T (V1)), depth(T (V2))}. To achieve a size
of nmin after p partitioning steps for Vvtx, the size of the node
set has to be reduced in average by the factor

ρ(Vvtx) :=
(

nmin

#Vvtx

)1/p

per step. An idle step is then performed, if the size of V in
Algorithm 7 on level 	 is less than #Vvtxρ(Vvtx)

	.

4 Parallel H -LU Factorisation

The parallelisation of the LU factorisation based on a
hierarchical bipartition of the index set, e.g. as was done
in Sect. 2.2 or by Algorithm 4, is mainly restricted to the
parallelisation of the involved matrix multiplications [20].

Furthermore, since recursions with respect to off-diagonal
blocks are necessary, the parallel degree is limited, leading
to unsatisfactory results in practical applications.

Using nested dissection on the other hand, greatly
increases the parallelism of the LU factorisation since parts
of the matrix are decoupled and can be treated independently.
This is not restricted to H -matrices but to general matrices
and was therefore exploited long ago for many applications,
and is in fact one of the reasons for the popularity of this
technique.

Nested dissection itself is a special version of the domain
decomposition method, where the number of domains is
restricted to two. The applicability of domain decomposition
to the H -matrix technique with a focus on parallel execution
was demonstrated in [16]. One can also find a discussion of a
multilevel domain decomposition approach with a recursive
definition of the involved matrices in this article.

Due to these properties, we will concentrate on the paral-
lelisation of the LU factorisation for H -matrices based on
nested dissection. Since this technique is not limited to the
black box algorithms described in Sect. 3 but also applica-
ble in the geometrical case discussed in [12], we will slightly
change the notation for involved clusters following the
domain decomposition naming scheme: the clusters con-
structed by bipartition are called domain clusters whereas the
third cluster that decouples the two domain clusters, before
called the vertex separator, is now called interface cluster.

For the parallelisation we assume a computer system with
a distributed memory, e.g. a network of workstations. Since
the memory is not shared, some form of communication is
necessary between individual processors.

For simplicity, the number of processors p shall be a power
of 2. Furthermore, we assume that p is much smaller than
N , the number of unknowns. Also, let P = {0, . . . , p − 1}
be the set of processors.

The mapping of clusters in the cluster tree TI to subsets
of processors is done recursively, where the recursion begins
with the root I which is mapped to all processors in the
set P . For the direct successors of I , P is partitioned into
P1 = {0, . . . , p/2− 1} and P2 = {p/2, . . . , p − 1}. The
succeeding domain clusters t1 and t2 of I are then mapped to
P1 and P2, respectively. The interface cluster on the same
level as t1 and t2 is, on the other hand, mapped to the union
of P1 and P2, and therefore to P . This mapping is pursued
until at level log p each domain cluster is associated with
a distinct processor. All successors are then mapped to the
CPU of their direct ancestor. An example of this mapping
can be seen in Fig. 13 (left).

For the nodes of the block cluster tree TI×I and hence
the matrix blocks in the resulting H -matrix, the described
mapping of the cluster tree is again used. Diagonal blocks
t × t ∈ TI×I , are mapped to the set of processors associ-
ated with t . For an off-diagonal block s× t ∈ TI×I , let Pt
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Fig. 13 Mapping of the nodes
of the cluster tree TI and
corresponding mapping of the
block clusters and
corresponding matrix blocks to
8 processors
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and Ps denote the corresponding processor-sets. Then s× t
is assigned to the set Pt ∩Ps . In Fig. 13 (right) this was
done for the block cluster tree resulting from the previous
example.

The described processor layout allows two different
handlings for matrix blocks corresponding to combinations
of interface clusters, e.g. the matrix A33. Since these matri-
ces are handled sequentially, they can be either stored on all
processors in the local processor map or just by a distinct
one, the so-called master processor m(A) = m(P(A)) :=
min P(A). The former method slightly reduces the commu-
nication costs, whereas the latter reduces storage costs. The
overall complexity is not changed.

So far it was assumed that the corresponding nodes for the
mapping of the processors in the block cluster tree are avail-
able. Unfortunately, this is not always the case. Especially
the off-diagonal blocks corresponding to a domain-interface
coupling might be admissible and hence, not refined such
that the recursive algorithm is not applicable. Therefore, for
a given admissibility condition adm, e.g. (6) or (16), the mod-
ified condition adm p is used for the construction of the block
cluster tree in case of more than one processor:

adm p(s × t) = true :⇔ adm(s × t) = true ∧
max {depth(s), depth(t)} ≥ log p (17)

This ensures that up to the case that a block cluster is mapped
to a distinct processor, nodes in the block cluster tree are
available. It should be noted that this modification slightly
decreases the sparsity of the resulting block cluster tree and
hence, increases the complexity of the algorithms. The mod-
ified admissibility condition is also crucial for the parallel
scalability of the algorithm, since unrefined blocks are han-
dled by a single processor.

The recursive nature of the processor mapping, which
indirectly also occurs at the data-distribution of the block
cluster tree, repeats in the design of the matrix algorithms,
of which the LU factorisation shall be discussed in detail.

For this, the matrix A is assumed to have a 3 × 3 block
structure:

A =
⎛
⎝

A11 A13

A22 A23

A31 A32 A33

⎞
⎠ ,

with submatrices corresponding to domain clusters in the
blocks A11 and A22, domain-interface coupling contained in
A13, A23, A31 and A32 and the relation between interface
indices in A33. For all matrix blocks M let P(M) denote the
set of mapped processors.

The actual LU decomposition method is split into 3 algo-
rithms, whereby in Algorithm 9 the main procedure is shown.
There, depending on the local processor number i , first the
local diagonal block is decomposed. Afterwards, the off-
diagonal matrix blocks are computed by calling the corre-
sponding “solve”-functions. Each processor then calculates
the local update Ti to the matrix A33, which are summed up
to form the global update for the interface matrix. The final
result T of the summation resides on the master processor
m(A). This processor is also responsible for decomposing
the interface matrix A33.

Remark 9 The summation and distribution of the matrices Ti

and A33 can be accomplished in log #P(A) steps by using
a procedure based on a binary tree, where each master pro-
cessor of a processor set P exchanges data with the corre-
sponding master processors of the subsets P1 and P2 of
P [9].

Solving the off-diagonal matrices A13 and A23 follows a
similar pattern. First the local matrices are solved, followed
by the update and computation of the interface matrix. Note
that the arguments A and U in Algorithm 10 correspond to
the matrices A11, A31 and A22, A32 in Algorithm 9.

The algorithm for the procedure “solve_upper” is imple-
mented in an analogous way.

Finally, the matrix multiplication, which is used to
compute the update for the interface matrix has to be modified
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Algorithm 9 Parallel LU factorisation
procedure LU( i, A )

if i ∈P(A11) then
LU( i, A11 );
solve_lower( i, A11, A31 ); solve_upper( i, A11, A13 );
Ti := A31 A13;

else
LU( i, A22 );
solve_lower( i, A22, A32 ); solve_upper( i, A22, A23 );
Ti := A32 A23;

end if
T :=∑

i∈P(A) Ti ;
if i = m(A) then

A33 := A33 − T ;
LU( i, A33 );

end if
distribute A33 to all processors in P;

end;

Algorithm 10 Computation of off-diagonal matrix A during
LU factorisation

procedure solve_lower( i, A, U )
if i ∈P(A11) then

solve_lower( i, A11, U11 );
Ti := A11U13;

else
solve_lower( i, A12, U22 );
Ti := A12U23;

end if
T =∑

i∈P(A) Ti ;
if i = m(A) then

A13 := A13 − T ;
solve_lower( i , A13, U33 );

end if
distribute A13 to all processors in P;

end;

(A11 A12 A13) ·
⎛
⎝

U11 U13
U22 U23

U33

⎞
⎠

to exploit the parallel distribution of the involved matrices.
The resulting algorithm is similar to the computation of the
off-diagonal blocks in Algorithm 10.

Algorithm 11 Parallel multiplication of off-diagonal matri-
ces

procedure multiply( i, A, B, C )
if i ∈P(A11) then

multiply( i, A11, B11, T1 );
else

multiply( i, A12, B12, T2 );
end if
T :=∑

i∈P(A) Ti ;
if i = m(A) then C := C + T + A13 B31;
distribute C to all processors in P;

end;

(A11 A12 A13) ·
⎛
⎝

B11
B21
B31

⎞
⎠

Two things are essential for the analysis of the parallel
algorithms: first, the difference in the work associated to
the two diagonal sub matrices A11 and A22, and second, the
size of the vertex separator. Equal workload for the matrices
A11 and A22 is ensured by cardinality balanced geometrical

clustering [12] or by the black box clustering algorithms in
Sect. 3.

As described in Sect. 3.3, partitioning algorithms mini-
mising the edge cut are particularly suited for nested dis-
section because of a small interface between the constructed
domain clusters. Unfortunately, the exact size of the inter-
face can not be further estimated in the general case, which
prohibits a detailed complexity analysis.

In the geometrical case on the other hand, a small (or
minimal) interface corresponds to a reduction of the spatial
dimension, e.g. the interface being a curve in R

2 or surface
in R

3 respectively. This directly translates into the number
of indices in the interface: for a domain cluster s in R

d with
#s = n and sons S(s) = {s1, s2}, the minimal interface t
between s1 and s2 is of order

#t ∈ O
(

n
d−1

d

)
. (18)

Due to the similarities between geometrical clustering and
algebraic BFS based clustering for the model problem (see
Sect. 3.1), the same holds in the latter case.

For the complexity analysis, we will assume an equal
workload for domain clusters and interface clusters of mini-
mal order (18).

We start by examining the matrix multiplication.
Algorithm 11 consists of a recursive call, a parallel sum-
mation of matrices, a sequential multiplication of the inter-
face-interface coupling and a broadcast of the result to all
processors in the local processor set. Let n be the dimension
of the matrices A and B, e.g. A ∈H (T, k) with #V (T ) = n,
and p = #P(A). By using Remark 9 both communication
parts can be accomplished in log p steps. Since the involved
matrices result in a storage size of O (n log n), the work for
the summation and the broadcast is

Nsum(n, p) = Nbroadcast(n, p) = O (log(p)n log n).

Together with the recursive call, the final complexity can then
be defined as

NH ·H (n, p) = NH ·H
(n

2
,

p

2

)
+ Nsum

(
n

d−1
d , p

)

+NH ·H
(

n
d−1

d

)
+ Nbroadcast

(
n

d−1
d , p

)
.

For clarity and simplicity, we omitted the dependency on the
rank and sparsity of the matrices and concentrated on the
parallel part. Also, since the multiplication of the submatri-
ces is done in parallel, only a single term NH ·H (n/2, p/2)

appears in the equation.
Sequential matrix multiplication has a complexity of

NH ·H (n, 1) = O
(
n log2 n

)
(see [12, Theorem 19]). Using

this result and by solving the recursion formula, we get the

123



Black box clustering for H -Matrices 287

final complexity of the parallel matrix multiplication:

NH ·H (n, p) =
O

(
n

p
log2 n

p
+ n

d−1
d log n

d−1
d

(
log n

d−1
d + log p

))
.

(19)

A similar analysis can be done for Algorithm 10 which
also contains calls to the parallel matrix multiplication. The
resulting equation for the complexity of Algorithm 10 is as
follows:

NSolve(n, p) = NSolve

(n

2
,

p

2

)
+ NH ·H

(n

2
,

p

2

)

+Nsum

(
N

d−1
d , p

)
+ NSolve

(
N

d−1
d , 1

)

+Nbroadcast

(
N

d−1
d , p

)
.

Again, parallel computations are only included once. The
final equation for the computational complexity for solving
the off-diagonal matrices in parallel is identical to the com-
plexity of the matrix multiplication:

NSolve(n, p) =
O

(
n

p
log2 n

p
+ n

d−1
d log n

d−1
d

(
log n

d−1
d + log p

))
.

(20)

Here, the result NSolve(n, 1) = O
(
n log2 n

)
for the sequen-

tial procedure discussed in the proof of Corollary 20 in [12]
was used.

At last, we come to the final algorithm of the parallel LU
decomposition. Examining Algorithm 9, one obtains the fol-
lowing complexity equation

NH −LU (N , p) = NH −LU

(
N

2
,

p

2

)
+ 2NSolve

(
N

2
,

p

2

)

+NH ·H
(

N

2
,

p

2

)
+ Nsum

(
N

d−1
d , p

)

+NH −LU

(
N

d−1
d

)

+Nbroadcast

(
N

d−1
d , p

)
.

Again, [12, Corollary 20] provides us with the result for the
sequential H -LU factorisation, which is NH −LU (N , 1) =
O

(
n log2 n

)
. After solving the recursion and using (19) and

(20), we can finally write down the complexity for computing
the LU factorisation in parallel.

Corollary 1 (Parallel H -LU factorisation) For the com-
plexity NH −LU (N , p) of the parallel H -LU factorisation

there holds:

NH −LU (N , p)

= O

(
N

p
log2 N

p
+ N

d−1
d log N

d−1
d

(
log p + log N

d−1
d

))

= O

(
N log2 N

p
+ N log2 N

N 1/d

)
. (21)

According to (21), the complexity of the LU factorisation
is equal to the complexity of the parallel matrix multipli-
cation. The sequential part of the algorithm, and hence, the
part which restricts the parallel scalability, is mainly depen-
dent on the size of the first interface, which should be chosen
optimal. Compared with this, the dependence on the num-
ber of processors is only logarithmic. We conclude that the
scalability is optimal as long as p � N 1/d .

Remark 10 The same kind of analysis can also be done for
the direct domain decomposition Ansatz for the parallel LU
factorisation as described in [16], resulting in a complexity
of

NH −LU (N , p)

= O

(
N

p
log2 N

p
+ p1/d N

d−1
d log2 N

d−1
d

)

= O

(
N log2 N

p
+ p1/d N log2 N

N 1/d

)
. (22)

Comparing (21) and (22), the (partial) parallelisation of the
interface as done by the nested dissection reduces the com-
plexity by a factor of p1/d for the second term.

5 Numerical results

In this section, the performance of the H -matrix arithmetics
based on black box clustering shall be examined on different
problems and compared to the geometrical approach. For the
black box clustering, the breadth-first search based algorithm
introduced in Sect. 3.1 and the graph partitioning algorithms
implemented in METIS [19] and SCOTCH [25] are used.
Besides the sequential method, also the parallel algorithm
of Sect. 4 is tested. The tests were performed on a parallel
computer system with 32 individual nodes connected by an
Infiniband network. Each node was equipped with an AMD
Opteron 254 processor with 2.8 GHz CPU speed.

In all tests, the H -LU factorisation LU ≈ A or, if A
is symmetric positive definite, the H -Cholesky factorisa-
tion L LT ≈ A is computed. The accuracy δ of the H -
arithmetics was chosen to obtain an approximation such that
‖I − (LU )−1 A‖2 ≤ ρ ≤ 10−2. In a linear iteration method,
the preconditioner (LU )−1 therefore guarantees convergence
with a convergence rate of at least ρ and hence, serves as a
very good preconditioner.
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Table 1 Comparison of geometrical and black box bisection clustering for the H -Cholesky factorisation of the Poisson matrix

N Geometric Black box (BFS) Black box (METIS) Black box (SCOTCH)

Time (s) Mem (MB) δ Time (s) Mem (MB) δ Time (s) Mem (MB) δ Time (s) Mem (MB) δ

2532 3.8 76 210−4 4.9 75 910−5 6.6 86 110−4 7.1 88 110−4

3582 10.0 169 110−4 12.9 173 410−5 15.7 187 610−5 17.7 199 610−5

5112 24.1 374 710−5 34.1 403 210−5 41.7 441 310−5 41.3 440 310−5

7292 61.1 840 410−5 85.8 912 110−5 116.1 1020 110−5 108.9 1,000 110−5

1,0232 144.9 1,780 210−5 227.1 1,960 610−6 250.8 2,110 810−6 262.7 2,140 810−6

403 79.1 285 110−3 102.3 295 810−4 106.5 292 110−3 93.9 280 110−3

513 194.5 634 110−3 334.9 788 510−4 326.1 763 710−4 266.7 706 710−4

643 520.3 1,400 110−3 1,280.0 2,010 310−4 896.4 1,760 410−4 812.6 1,720 410−4

813 1,440.0 3,560 510−4 3,332.9 4,760 210−4 2,444.8 4,330 210−4 2,489.9 4,420 210−4

1023 3,875.5 8,070 410−4 9,773.4 11,490 110−4 6,575.7 9,940 210−4 8,509.6 11,020 110−4

Table 2 Comparison of geometrical and black box nested dissection
clustering for the H -Cholesky factorisation of (23)

N Geometric Black box (BFS)

Time(s) Mem (MB) δ Time (s) Mem (MB) δ

2532 0.9 51 110−3 1.3 47 310−5

3582 1.9 86 410−4 2.9 94 210−5

5112 4.5 212 210−4 6.5 198 910−6

7292 9.6 371 110−4 15.0 402 510−6

1,0232 20.2 878 610−5 31.6 819 210−6

403 12.6 99 110−2 32.7 135 310−4

513 46.9 300 310−3 97.6 323 210−4

643 117.4 592 210−3 289.1 719 110−4

813 269.8 1,410 110−3 804.3 1,570 810−5

1023 752.3 3,020 110−3 1,907.3 3,370 610−5

For the first numerical test, the matrix A is defined by
Poisson’s equation

−
u = f in � =]0, 1[d , d ∈ {2, 3}, (23)

discretised with the finite element method using piecewise
linear Ansatz functions. Since the corresponding stiffness
matrix is symmetric, the H -Cholesky factorisation L LT ≈
A is computed.

Table 1 shows the results for the computation of the H -
Cholesky decomposition L LT of the matrix A using standard
geometrical bisection and black box bisection with the stan-
dard admissibility (see Definition 8).

In all cases, the geometrical approach shows the best
performance in terms of execution time and (except for the
smallest problem) memory consumption. The numbers for
the black box clustering vary significantly with the used par-
titioning technique, whereby in the 2D case the BFS strat-
egy and for the 3D problem the METIS algorithm give the

best results. The required accuracy δ of the H -arithmetics
to obtain the desired accuracy of the H -Cholesky factors
is very similar for all graph partitioning methods, with a
slight disadvantage for the BFS algorithm. Nevertheless, the
increase in the execution time for black box clustering based
H -matrices compared to the geometrical approach never
exceeds a factor of 2 for the 2D problems and 2.5 in the 3D
case, demonstrating the usability of the black box technique.

Instead of standard bisection, also nested dissection (see
Sect. 3.3) can be applied to the given problem. The results for
these computations are presented in Table 2. While the com-
parison of the results for the geometrical and the black box
approach show a similar picture as in the standard bisection
clustering, the raw numbers clearly demonstrate the supe-
riority of the nested dissection technique over the bisection
approach. The execution time of the Cholesky factorisation
is drastically reduced and the memory consumption is more
than halved compared to the results in Table 1.

The second problem uses the convection-diffusion equa-
tion:

− κ
u + b · ∇u = f in � =]0, 1[d , d ∈ {2, 3}. (24)

Here, the (circular) convection direction b is defined by

b(x) :=
(

0.5− x2

x1 − 0.5

)
.

In R
3, the third component of b is zero. The value of κ is set

to 10−3 resulting in a dominant convection.
The results for the convection–diffusion equation pre-

sented in Table 3 are similar to the Poisson problem, albeit
the difference between the geometrical and the algebraical
approach is smaller.1 Again, the METIS algorithm provides
the best graph partitioning strategy with a resulting runtime

1 Timings in the last row (N = 1023) were obtained—due to memory
limitations—on a 20% slower CPU.
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Table 3 Comparison of geometrical and black box bisection clustering for the H -LU factorisation of (24)

N Geometric Black box (BFS) Black box (METIS) Black box (SCOTCH)

Time (s) Mem (MB) δ Time (s) Mem (MB) δ Time (s) Mem (MB) δ Time (s) Mem (MB) δ

2532 6.7 137 110−4 8.3 137 910−5 7.9 134 110−4 8.3 135 110−4

3582 16.0 294 910−5 21.2 308 510−5 20.8 307 610−5 21.4 308 610−5

5112 40.8 669 510−5 58.5 716 210−5 49.0 677 310−5 52.6 702 310−5

7292 106.0 1,450 310−5 144.6 1,560 110−5 119.1 1,490 210−5 127.9 1,520 210−5

1,0232 236.3 3,120 210−5 382.1 3,450 710−6 294.5 3,240 110−5 335.8 3,430 110−5

403 137.6 527 110−3 188.2 541 610−4 179.0 529 710−4 169.6 522 710−4

513 378.5 1,210 610−4 592.2 1,360 510−4 449.6 1,270 510−4 503.1 1,300 510−4

643 1,079.4 2,840 510−4 1,861.8 3,300 310−4 1,630.2 3,240 310−4 1,645.6 3,220 310−4

813 2,924.4 6,930 310−4 5,002.7 8,140 210−4 3,952.5 7,630 210−4 4,349.6 7,870 210−4

1023 9,738.7 15,970 210−4 21,327.5 20,340 110−4 17,177.0 19,270 110−4 16,560.9 19,340 110−4

Table 4 Comparison of geometrical and black box nested dissection clustering for the H -LU factorisation of (24)

N Geometric Black Box (BFS)

Time (s) Mem (MB) δ Time (s) Mem (MB) δ

2532 2.1 97 110−4 2.9 92 410−5

3582 4.4 160 910−5 5.8 183 210−5

5112 9.9 406 610−5 13.0 367 110−5

7292 20.9 687 410−5 28.5 765 610−6

1,0232 43.8 1,620 410−5 61.6 1,490 310−6

403 47.3 292 110−3 54.8 263 410−4

513 154.7 690 510−4 175.0 627 210−4

643 409.2 1,360 410−4 522.4 1,380 110−4

813 843.2 3,100 310−4 1,192.8 3,020 110−4

1023 2,328.8 6,890 210−4 3,371.4 6,640 810−5

of the H -arithmetics of only 20–30% slower than the corre-
sponding geometrical variant. The accuracy δ is almost iden-
tical to the Poisson problem, demonstrating the robustness of
H -matrices.

Next, nested dissection clustering is used to compute an
H -LU preconditioner. The corresponding results are shown
in Table 4. As for the Poisson problem, nested dissection sig-
nificantly improves the computational efficiency and reduces
the memory consumption. The difference between the geo-
metrical and the black box approach is comparable to the
Poisson case.

The previous two problems are based on a regularly refined
grid for which, by construction (see Sect. 3.1), similar results
for the geometrical and the black box case are expected. The
third example will use a different grid with strong local refine-
ment (see Fig. 14). The equation to be solved is again the
Poisson problem.

Table 5 shows the results obtained from the computation
of the Cholesky factorisation for the locally refined grid.

There, especially METIS shows a very competitive perfor-
mance compared to geometrical clustering. The BFS cluster-
ing technique on the other hand results in a relatively large
impact in terms of runtime. The required accuracy δ is very
similar for all clustering strategies.

Although the H -matrix technique is not applicable to
arbitrary matrices, the black box approach for the compu-
tation of a cluster tree brings H -matrices near direct solv-
ers like PARDISO [27–29] or UMFPACK [7]. Therefore,
the performance of H -matrices for the solution of linear
systems compared to the performance of these direct solv-
ers shall be examined for the convection-diffusion problem
(24). For H -matrices and for PARDISO the nested dissec-
tion approach was used in this test. The results are presented
in Table 6. Missing numbers could not be computed on the
given computer system.

The results show a large dependence on the spatial dimen-
sion of the problem. In 2D the UMFPACK and the PARD-
ISO solver are very fast and consume the least amount of
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Table 5 Performance of Cholesky factorisation with different cluster-
ing techniques on a locally refined grid

N Geom. BFS

Time (s) Mem (MB) δ Time (s) Mem (MB) δ

209, 427 62.3 616 310−5 143.5 849 110−5
794, 197 335.4 2, 770 910−6 832.2 3, 850 410−6

N METIS SCOTCH

Time (s) Mem (MB) δ Time (s) Mem (MB) δ

209,427 71.7 666 210−5 80.2 705 210−5

794,197 431.1 3,140 610−6 461.4 3,230 610−6

Fig. 14 Grid with local refinement

memory. H -Matrices on the other hand need more mem-
ory but provide the better computational complexity, which
results in a point of break-even at 2 million unknowns for
the convection–diffusion problem. For the 3D case, PARD-
ISO and UMFPACK have a quadratic to cubic complexity in
N . Therefore, H -matrices are faster for more than 100,000
unknowns, demonstrating the advantage of the almost linear
complexity of H -matrices (Fig. 15).

Finally, the parallel performance of the H -arithmetic
based on nested dissection shall be examined for the H -

Table 6 Comparison of H -LU factorisation, PARDISO and UMF-
PACK for (24)

N Black box PARDISO UMFPACK

Time (s) Mem (MB) Time (s) Mem (MB) Time (s) Mem (MB)

5112 13.0 367 7.1 193 7.3 259

7292 28.5 765 18.6 422 17.5 543

1,0232 61.6 1,490 52.6 891 51.6 1,185

1,4472 135.0 3,040 150.2 1,876 131.8 2452

2,0472 283.6 6,150 475.1 4,048 379.8 5,292

403 54.8 263 41.6 275 85.5 585

513 175.0 627 197.9 719 710.6 2,026

643 522.4 1,380 941.6 1,953 4,528.1 5,364

813 1,192.8 3,020 4,317.5 5,207 21,321.1 16,071

1023 3,371.4 6,640 22,191.3 13,996

Cholesky factorisation of the stiffness matrix for the Poisson
problem (23). Figure 16 shows the parallel speedup, i.e. the
ratio of the sequential and the parallel runtime, for different
problem sizes. In addition to the nested dissection clustering
algorithm, also a direct domain decomposition method (DD)
was applied to the given problem to show the different scal-
ing properties (cf. Remark 10). The results are presented only
for the geometrical approach since the black box clustering
technique gave almost identical numbers.

In the 2D case, the influence of the sequentially treated
interface is minimal, leading to an almost perfect parallel
speedup. Only for a large number of processors, the speedup
deviates from the perfect behaviour. Here, the role of the
sequential part increases, bounding the speedup. Fortunately,
this effect decreases with larger problem sizes. For the direct
domain decomposition algorithm, the interface and therefore
the sequential part of the algorithm is larger, which only leads
to a mediocre scaling behaviour.

Due to the decreased volume-to-surface ratio in R
3, the

interface between domain clusters is larger. Therefore, the
parallel speedup of the H -Cholesky factorisation is smaller
than in the 2D case (cf. (21)). Also, the increase of the

Fig. 15 Complexity of H -LU
factorisation, PARDISO and
UMFPACK for (24) in R
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Fig. 16 Parallel speedup of the
H -Cholesky factorisation of
(23) in R

2 (left) and R

3 (right)

 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30
S

pe
ed

up
No. of Processors

  n = 20472

  n = 28952

  n = 20472, DD
  S(p) = p

 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30

S
pe

ed
up

No. of Processors

  n = 1023

  n = 1283

  n = 1023, DD
  S(p) = p

speedup with a larger N is not visible. In fact, a smaller num-
ber of unknowns produces a slightly better parallel scaling
behaviour. This can be explained by imbalances in the clus-
ter sizes and therefore the work load per processor which are
more pronounced in 3D due to the small number of indices
per spatial direction (128 vs. 2895 in R

2).

Open Access This article is distributed under the terms of the Creative
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noncommercial use, distribution, and reproduction in any medium,
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