Skip to main content
Log in

Primal-dual Newton Methods in Structural Optimization

  • Regular Article
  • Published:
Computing and Visualization in Science

Abstract

We consider the numerical solution of optimization problems for systems of partial differential equations with constraints on the state and design variables as they arise in the optimal design of the shape and the topology of continuum mechanical structures. After discretization the resulting nonlinear programming problems are solved by an “all-at-once” approach featuring the numerical solution of the state equations as an integral part of the optimization routine. In particular, we focus on primal-dual Newton methods combined with interior-point techniques for an appropriate handling of the inequality constraints. Special emphasis is given on the efficient solution of the primal-dual system that results from the application of Newton’s method to the Karush–Kuhn–Tucker conditions where we take advantage of the special block structure of the primal-dual Hessian. Applications include structural optimization of microcellular biomorphic ceramics by homogenization modeling, the shape optimization of electrorheological devices, and the topology optimization of high power electromotors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G. (2002). Shape Optimization by the Homogenization Method. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  2. Bayer, A.G.: Provisional Product Information. Rheobay TP AI 3565 and Rheobay TP AI 3566. Bayer AG, Silicones Business Unit, No. AI 12601e, Leverkusen (1997)

  3. Bendsøe M.P. (1995). Optimization of Structural Topology, Shape, and Material. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Bendsøe M.P., Sigmund O. (2003). Topology Optimization: Theory, Methods and Applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  5. Bergounioux M., Haddou M., Hintermüller M., Kunisch K. (2000). A comparison of a Moreau-Yosida based active set strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11:495–521

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertsekas D.P. (1982). Constrained Optimization and Lagrange Methods. Academic, New York

    MATH  Google Scholar 

  7. Biros G., Ghattas O. (2005a). Parallel Lagrange–Newton–Krylov–Schur mezhods for PDE constrained optimization. part I: The Krylov–Schur solver. SIAM J. Sci. Comput. 27:687–713

    Article  MathSciNet  MATH  Google Scholar 

  8. Biros G., Ghattas O. (2005b). Parallel Lagrange–Newton–Krylov–Schur mezhods for PDE constrained optimization. Part I: The Lagrange–Newton solver and its application to optimal control of steady viscous flows. SIAM J. Sci. Comput. 27:714–739

    MathSciNet  MATH  Google Scholar 

  9. Boggs P.T., Tolle J.W. (1995). Sequential quadratic programming. Acta Numer. 4:1–50

    MathSciNet  Google Scholar 

  10. Böhm, P., Wachutka, G., Hoppe, R.H.W.: Modeling and simulation of the transient electromagnetic behavior of high power bus bars. In: High Performance and Engineering Computing. Methods, and Applications, Proc. Int. FORTWIHR Conf. 2001, Erlangen, March 12-14, 2001 Zenger, Chr. (eds.), Lecture Notes in Computational Science and Engineering, pp. 385–392 Springer 21, Berlin Heidelberg New York (2002)

  11. Böhm, P., Hoppe, R.H.W., Mazurkevitch, G., Petrova, S., Wachutka, G., Wolfgang, E.: Optimal structural design of high power electronic devices by topology optimization. In: Krebs, H., Jäger, W. (eds.), Mathematics Key Technology for the . Cooperations between Mathematics and Industry, pp. 365–376, Springer, Berlin Heidelberg New York (2003)

  12. Chamberlain R.M., Lemaréchal C., Pedersen H.C., Powell M.J.D. (1982). The watchdog technique for forcing convergence in algorithms for constrained optimization. Math. Programming Study 16:1–17

    MATH  Google Scholar 

  13. Cherkaev A. (2000). Variational Methods for Structural Optimization. Springer, Berlin New York

    MATH  Google Scholar 

  14. Delfour M.C., Zolesio J.P. (2001). Shapes and Geometries: Analysis, Differential Calculus and Optimization. SIAM, Philadelphia

    MATH  Google Scholar 

  15. Dennis J., Heinkenschloss M., Vicente L.N. (1998). Trust-region interior-point SQP algorithms for a class of nonlinear programming problems. SIAM J. Control Optim. 36:1750–1794

    Article  MathSciNet  MATH  Google Scholar 

  16. Deuflhard P. (2004). Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  17. Engelmann B., Hiptmair R., Hoppe R.H.W., Mazurkevitch G. (2000). Numerical simulation of electrorheological fluids based on an extended Bingham model. Comput. Vis. Sci. 2:211–219

    Article  MATH  Google Scholar 

  18. Fiacco A.V., McCormick G.P. (1990). Nonlinear Programming: sequential Unconstrained Minimization Techniques. Reprint, SIAM, Philadelphia

    MATH  Google Scholar 

  19. Filisko F. (1995). Overview of ER technology. In: Havelka K. (eds) Progress in ER Technology. Plenum Press, New York

    Google Scholar 

  20. Forsgren A., Gill Ph.E., Wright M.H. (2002). Interior methods for nonlinear optimization. SIAM Rev. 44:522–597

    Article  MathSciNet  Google Scholar 

  21. Gay D.M., Overton M.I., Wright M.H. (1998). Primal-dual interior method for nonconvex nonlinear programming. In: YuanY. (eds) Advances in Nonlinear Programming. Kluwer, Dordrecht, pp. 31–56

    Google Scholar 

  22. Gill Ph.E., Murray W., Saunders M.A., Tomlin J.A, Wright M.H. (1986). On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method. Math. Program. 36:183–209

    Article  MathSciNet  MATH  Google Scholar 

  23. Gill Ph.E., Murray W., Wright M.H. (1999). Practical Optimization. Reprint, Academic, New York

    Google Scholar 

  24. Glowinski R., LeTallec P. (1989). Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics, vol. 9, SIAM, Philadelphia

    MATH  Google Scholar 

  25. Greil P., Lifka Th., Kaindl A. (1998a). Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure. J. Eur. Ceram. Soc. 18:1961–1973

    Article  Google Scholar 

  26. Greil P., Lifka Th., Kaindl A. (1998b). Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties. J. Eur. Ceram. Soc. 18:1975–1983

    Article  Google Scholar 

  27. Haslinger J., Mäkinen R.A.E. (2004). Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, Philadelphia

    Google Scholar 

  28. Haslinger J., Neittaanmäki P. (1988). Finite Element Approximation for Optimal Shape Design: Theory and Applications. Wiley, Chichester

    MATH  Google Scholar 

  29. Hintermüller M. (2003). A primal-dual active set algorithm for bilaterally control constrained optimal control problems. Quar. Appl. Math. LXI: 131–161

    Google Scholar 

  30. Hoppe, R.H.W.: Adaptive domain decomposition techniques in electromagnetic field computation and electrothermomechanical coupling problems. In: Brezzi F. et al., (eds.) Proc. 4th European Conference on Numerical Mathematics and Applications, Ischia, Italy, July 23–27, 2001 , pp. 201–218, Springer, (2003)

  31. Hoppe, R.H.W., Petrova, S.I.: Homogenized elasticity solvers for biomorphic microcellular ceramics. In: Brezzi, F. etal (eds.) Proc. 4th Europ. Conf. Numer. Math. and Adv. Appl., ENUMATH 2001, July 23–28, 2001, Ischia, Italy , pp. 371–380, Springer Berlin Heidelberg New York (2003a)

  32. Hoppe R.H.W., Petrova S.I. (2003b). Homogenization design method for biomorphic composite materials. J. Comput. Methods Sci. Eng. 3:383–391

    Google Scholar 

  33. Hoppe R.H.W., Petrova S.I. (2003c). Applications of primal-dual interior methods in structural optimization. Comput. Methods Appl. Math. 3:159–176

    MathSciNet  MATH  Google Scholar 

  34. Hoppe R.H.W., Litvinov W.G. (2004a). Problems on electrorheological fluid flow. Commun. Pure Appl. Anal. 3:809–848

    Article  MathSciNet  MATH  Google Scholar 

  35. Hoppe R.H.W., Petrova S.I. (2004b). Primal-dual Newton interior point methods in shape and topology optimization. Numer. Linear Algebra Appl. 11:413–429

    Article  MathSciNet  MATH  Google Scholar 

  36. Hoppe R.H.W., Petrova S.I. (2004c). Optimal shape design in biomimetics based on homogenization and adaptivity. Math. Comput. Simulat. 65:257–272

    Article  MathSciNet  MATH  Google Scholar 

  37. Hoppe, R.H.W., Petrova, S.I., Schulz, V.: Topology optimization of high power electronic devices. In: Hoffmann, K.-H., Leugering, G. et al. (eds.) Proc. Conf. Oberwolfach Conference ”Optimal Control and Optimization”, Oberwolfach, June 5–9, 2000 pp. 119–131, Birkhäuser, Basel (2002a)

  38. Hoppe, R.H.W., Petrova, S.I., Schulz, V.: 3D structural optimization in electromagnetics. In: Debit N. et al. (eds.) Proc. 13th Int. Conf. “Domain Decomposition Methods and Applications”, Lyon, October 9–12, 2000, pp. 479–486, CIMNE, Barcelona (2002b)

  39. Hoppe R.H.W., Petrova S.I., Schulz V. (2002c). A primal-dual Newton-type interior-point method for topology optimization. J. Optim. Theory Appl. 114:545–571

    Article  MathSciNet  MATH  Google Scholar 

  40. Hoppe, R.H.W., Kladny, R., Petrova, S.I., Sieber, H.: Modeling, simulation, and optimization of microstructured biomorphic materials. In: Hoffmann, K.H., (ed.), Functional Micro- and Nanosystems. Proceedings of the 4th caesarium, Bonn, June 16–18, 2003 Springer, Berlin Heidelberg New York (2004a)

  41. Hoppe, R.H.W., Litvinov, W.G., Rahman, T.: Mathematical modeling and numerical simulation of electrorheological devices and systems. In: Heikkola, E., Kuznetsov, Y., Neittaanmäki, P., Pironneau, O. (eds.) Numerical Methods for Scientific Computing, Variational Problems, and Applications, pp. 80–93. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (2004)

  42. Hoppe, R.H.W., Petrova, S.I., Vassilevski, Y.: Adaptive grid refinement for computation of the homogenized elasticity tensor. In: Lirkov, I., et al. (ed.) Proceedings of 4th International Conference on Large Scale Scientific Computing LSSC’03, Sozopol, June 4–8, 2003. Lecture Notes in Computer Science, Vol. 2907, pp. 371–378. Springer, Berlin Heidelberg New York (2004)

  43. Karmarkar N.K. (1984). A new polynomial time algorithm for linear programming. Comninatorica 4:373–395

    Article  MathSciNet  MATH  Google Scholar 

  44. Maar B., Schulz V. (2000). Interior point multigrid methods for topology optimization. Struct. Optim. 19:214-224

    Article  Google Scholar 

  45. Mohammadi B., Pironneau O. (2001). Applied Shape Optimization for Fluids. Oxford University Press, Oxford

    MATH  Google Scholar 

  46. Nédélec J.-C. (1980). Mixed finite element in \(\mathbb{R}^3\). Numer. Math. 35:315–341

    Article  MathSciNet  MATH  Google Scholar 

  47. Nocedal J., Wright S.J. (1999). Numerical Optimization. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  48. Pironneau O. (1984). Optimal Shape Design for Elliptic Systems. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  49. Rajagopal K., Wineman A. (1992). Flow of electrorheological materials. Acta Mechanica 91:57–75

    Article  MathSciNet  MATH  Google Scholar 

  50. Rozvany G. (1989). Structural Design via Optimality Criteria. Kluwer, Dordrecht

    MATH  Google Scholar 

  51. Ruge, J.W., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S.F. (ed.), Multigrid Methods, Frontiers in Applied Mathematics, vol. 5, SIAM, Philadelphia (1986)

  52. Ružička M. (2000). Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748, Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  53. Shenoy A.R., Heinkenschloss M., Cliff E.M. (1998). Airfoil design by an all-at-once approach. Int. J. Comput. Fluid Mech 11:3–25

    Article  MathSciNet  MATH  Google Scholar 

  54. Sieber H., Rambo C.R., Cao J., Vogli E., Greil P. Manufacturing of porous oxide ceramics by replication of wood morphologies Key. Eng. Mater. 206–213, 2009–2012 (2002).

  55. Sokolowski J., Zolesio J.P. (1992). Introduction to Shape Optimization. Springer, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  56. Ulbrich M. (2003). Semismooth Newton methods for operator equations in functions spaces. SIAM J. Optim. 13:805–842

    Article  MathSciNet  MATH  Google Scholar 

  57. Ulbrich M., Ulbrich S. (2000). Superlinear convergence of affine-scaling interior-point Newton methods for infinite-dimensional nonlinear problems with pointwise bounds. SIAM J. Control Optim. 38:1938–1984

    Article  MathSciNet  MATH  Google Scholar 

  58. Ulbrich M., Ulbrich S., Heinkenschloss M. (1999). Glocal convergence of trust-region interior-point algorithms for infinite-dimensional nonconvex minimization subject to pointwise bounds. SIAM J. Control Optimization 37:731–764

    Article  MathSciNet  MATH  Google Scholar 

  59. Varela-Feria F.M., Martynez-Fernandez J., de Arellano-Lopez A.R., Singh M. (2002). Low density biomorphic silicon carbide: microstructure and mechanical properties. J. Europ. Ceram. Soc. 22:2719

    Article  Google Scholar 

  60. Vogli E., Sieber H., Greil P. (2002). Biomorphic SiC-ceramic prepared by Si-gas phase infiltration of wood. J. Eur. Ceram. Soc. 22: 2663–2668

    Article  Google Scholar 

  61. Weiser, M.: Interior point methods in function space. ZIB Report 03-35, Konrad-Zuse-Zentrum für Informationstechnik Berlin (2003)

  62. Weiser, M., Deuflhard, P.: The central path towards the numerical solution of optimal control problems. ZIB Report 01-12, Konrad-Zuse-Zentrum für Informationstechnik Berlin (2001)

  63. Wittum G. (1989). On the convergence of multigrid iterations with transforming smoothers Theory with applications to the Navier Stokes equations. Numer. Math. 57:15–38

    Article  MathSciNet  Google Scholar 

  64. Wright M.H. (1992). Interior methods for constrained optimization. Acta Numer. 1:341–407

    Article  Google Scholar 

  65. Wright S.J. (1997). Primal-Dual Interior-Point Methods. SIAM, Philadelphia

    MATH  Google Scholar 

  66. Ye Y. (1997). Interior-Point Algorithm: Theory and Analysis. Wiley, New York

    MATH  Google Scholar 

  67. Zhou M., Rozvany G. (1991). The COC algorithm, part II: Topological, geometry and generalized shape optimization. Comp. Meth. Appl. Mech. Engrg. 89:309–336

    Article  Google Scholar 

  68. Zollfrank C., Kladny R., Sieber H., Greil P. (2004). Biomorphous SiOC/C-ceramic composites from chemically modified wood templates. J. Eur. Ceram. Soc. 24:479–487

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald H. W. Hoppe.

Additional information

Communicated by G. Wittum

Dedicated to Peter Deuflhard on the occasion of his 60th birthday

The first and the third author have been supported by the DFG within the Collaborative Research Center SFB 438 and within the Priority Program SPP 1095 under the Grants Ho 877/5-1 and Ho 877/5-2. The first author acknowledges further support by the BMBF under Grant 03HOM3A1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoppe, R.H.W., Linsenmann, C. & Petrova, S.I. Primal-dual Newton Methods in Structural Optimization. Comput. Visual Sci. 9, 71–87 (2006). https://doi.org/10.1007/s00791-006-0018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-006-0018-9

Keywords

Navigation